Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlne Unicode version

Theorem trlne 29624
Description: The trace of a lattice translation is not equal to any atom not under the fiducial co-atom  W. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 25-May-2012.)
Hypotheses
Ref Expression
trlne.l  |-  .<_  =  ( le `  K )
trlne.a  |-  A  =  ( Atoms `  K )
trlne.h  |-  H  =  ( LHyp `  K
)
trlne.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlne.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlne  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  =/=  ( R `  F ) )

Proof of Theorem trlne
StepHypRef Expression
1 simp3r 989 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  W )
2 trlne.l . . . . . 6  |-  .<_  =  ( le `  K )
3 trlne.h . . . . . 6  |-  H  =  ( LHyp `  K
)
4 trlne.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
5 trlne.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
62, 3, 4, 5trlle 29623 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  .<_  W )
763adant3 980 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  .<_  W )
8 breq1 4000 . . . 4  |-  ( P  =  ( R `  F )  ->  ( P  .<_  W  <->  ( R `  F )  .<_  W ) )
97, 8syl5ibrcom 215 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  =  ( R `  F )  ->  P  .<_  W ) )
109necon3bd 2458 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( -.  P  .<_  W  ->  P  =/=  ( R `  F
) ) )
111, 10mpd 16 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  =/=  ( R `  F ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2421   class class class wbr 3997   ` cfv 4673   lecple 13178   Atomscatm 28703   HLchlt 28790   LHypclh 29423   LTrncltrn 29540   trLctrl 29597
This theorem is referenced by:  trlnle  29625
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-undef 6264  df-riota 6272  df-map 6742  df-poset 14043  df-plt 14055  df-lub 14071  df-glb 14072  df-meet 14074  df-p0 14108  df-p1 14109  df-lat 14115  df-oposet 28616  df-ol 28618  df-oml 28619  df-covers 28706  df-ats 28707  df-atl 28738  df-cvlat 28762  df-hlat 28791  df-lhyp 29427  df-laut 29428  df-ldil 29543  df-ltrn 29544  df-trl 29598
  Copyright terms: Public domain W3C validator