Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnidat Unicode version

Theorem trlnidat 30659
Description: The trace of a lattice translation other than the identity is an atom. Remark above Lemma C in [Crawley] p. 112. (Contributed by NM, 23-May-2012.)
Hypotheses
Ref Expression
trlnidat.b  |-  B  =  ( Base `  K
)
trlnidat.a  |-  A  =  ( Atoms `  K )
trlnidat.h  |-  H  =  ( LHyp `  K
)
trlnidat.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlnidat.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlnidat  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  A
)

Proof of Theorem trlnidat
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 trlnidat.b . . 3  |-  B  =  ( Base `  K
)
2 eqid 2408 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 trlnidat.a . . 3  |-  A  =  ( Atoms `  K )
4 trlnidat.h . . 3  |-  H  =  ( LHyp `  K
)
5 trlnidat.t . . 3  |-  T  =  ( ( LTrn `  K
) `  W )
61, 2, 3, 4, 5ltrnnid 30622 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  E. p  e.  A  ( -.  p ( le `  K ) W  /\  ( F `  p )  =/=  p
) )
7 simp11 987 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  p  e.  A  /\  ( -.  p ( le `  K ) W  /\  ( F `  p )  =/=  p ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
8 simp2 958 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  p  e.  A  /\  ( -.  p ( le `  K ) W  /\  ( F `  p )  =/=  p ) )  ->  p  e.  A
)
9 simp3l 985 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  p  e.  A  /\  ( -.  p ( le `  K ) W  /\  ( F `  p )  =/=  p ) )  ->  -.  p ( le `  K ) W )
10 simp12 988 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  p  e.  A  /\  ( -.  p ( le `  K ) W  /\  ( F `  p )  =/=  p ) )  ->  F  e.  T
)
11 simp3r 986 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  p  e.  A  /\  ( -.  p ( le `  K ) W  /\  ( F `  p )  =/=  p ) )  ->  ( F `  p )  =/=  p
)
12 trlnidat.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
132, 3, 4, 5, 12trlat 30655 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( p  e.  A  /\  -.  p
( le `  K
) W )  /\  ( F  e.  T  /\  ( F `  p
)  =/=  p ) )  ->  ( R `  F )  e.  A
)
147, 8, 9, 10, 11, 13syl122anc 1193 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  /\  p  e.  A  /\  ( -.  p ( le `  K ) W  /\  ( F `  p )  =/=  p ) )  ->  ( R `  F )  e.  A
)
1514rexlimdv3a 2796 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( E. p  e.  A  ( -.  p ( le `  K ) W  /\  ( F `  p )  =/=  p )  -> 
( R `  F
)  e.  A ) )
166, 15mpd 15 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  F  =/=  (  _I  |`  B ) )  ->  ( R `  F )  e.  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   E.wrex 2671   class class class wbr 4176    _I cid 4457    |` cres 4843   ` cfv 5417   Basecbs 13428   lecple 13495   Atomscatm 29750   HLchlt 29837   LHypclh 30470   LTrncltrn 30587   trLctrl 30644
This theorem is referenced by:  ltrnnidn  30660  trlnidatb  30663  trlcone  31214  cdlemg46  31221  trljco  31226  cdlemh2  31302  cdlemh  31303  tendotr  31316  cdlemk3  31319  cdlemk12  31336  cdlemkole  31339  cdlemk14  31340  cdlemk15  31341  cdlemk1u  31345  cdlemk5u  31347  cdlemk12u  31358  cdlemk37  31400  cdlemk39  31402  cdlemkid1  31408  cdlemk47  31435  cdlemk51  31439  cdlemk52  31440  cdleml1N  31462
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-id 4462  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-undef 6506  df-riota 6512  df-map 6983  df-poset 14362  df-plt 14374  df-lub 14390  df-glb 14391  df-join 14392  df-meet 14393  df-p0 14427  df-p1 14428  df-lat 14434  df-clat 14496  df-oposet 29663  df-ol 29665  df-oml 29666  df-covers 29753  df-ats 29754  df-atl 29785  df-cvlat 29809  df-hlat 29838  df-lhyp 30474  df-laut 30475  df-ldil 30590  df-ltrn 30591  df-trl 30645
  Copyright terms: Public domain W3C validator