Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnle Unicode version

Theorem trlnle 30997
Description: The atom not under the fiducial co-atom  W is not less than the trace of a lattice translation. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
trlne.l  |-  .<_  =  ( le `  K )
trlne.a  |-  A  =  ( Atoms `  K )
trlne.h  |-  H  =  ( LHyp `  K
)
trlne.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlne.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlnle  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  ( R `  F
) )

Proof of Theorem trlnle
StepHypRef Expression
1 simpl1l 1006 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  K  e.  HL )
2 hlatl 30172 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
31, 2syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  K  e.  AtLat )
4 simpl3l 1010 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  P  e.  A )
5 trlne.l . . . . 5  |-  .<_  =  ( le `  K )
6 eqid 2296 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
7 trlne.a . . . . 5  |-  A  =  ( Atoms `  K )
85, 6, 7atnle0 30121 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  -.  P  .<_  ( 0. `  K ) )
93, 4, 8syl2anc 642 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  -.  P  .<_  ( 0. `  K ) )
10 simpl1 958 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
11 simpl3 960 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
12 simpl2 959 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  F  e.  T )
13 simpr 447 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( F `  P )  =  P )
14 trlne.h . . . . . 6  |-  H  =  ( LHyp `  K
)
15 trlne.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
16 trlne.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
175, 6, 7, 14, 15, 16trl0 30981 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( R `  F )  =  ( 0. `  K ) )
1810, 11, 12, 13, 17syl112anc 1186 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( R `  F )  =  ( 0. `  K ) )
1918breq2d 4051 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( P  .<_  ( R `  F )  <->  P  .<_  ( 0. `  K ) ) )
209, 19mtbird 292 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  -.  P  .<_  ( R `  F ) )
215, 7, 14, 15, 16trlne 30996 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  =/=  ( R `  F ) )
2221adantr 451 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  P  =/=  ( R `  F
) )
23 simpl1l 1006 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  K  e.  HL )
2423, 2syl 15 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  K  e.  AtLat )
25 simpl3l 1010 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  P  e.  A )
26 simpl1 958 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( K  e.  HL  /\  W  e.  H ) )
27 simpl3 960 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
28 simpl2 959 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  F  e.  T )
29 simpr 447 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( F `  P )  =/=  P )
305, 7, 14, 15, 16trlat 30980 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
3126, 27, 28, 29, 30syl112anc 1186 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( R `  F )  e.  A )
325, 7atncmp 30124 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  ( R `  F )  e.  A )  ->  ( -.  P  .<_  ( R `
 F )  <->  P  =/=  ( R `  F ) ) )
3324, 25, 31, 32syl3anc 1182 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( -.  P  .<_  ( R `
 F )  <->  P  =/=  ( R `  F ) ) )
3422, 33mpbird 223 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  -.  P  .<_  ( R `  F ) )
3520, 34pm2.61dane 2537 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  ( R `  F
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271   lecple 13231   0.cp0 14159   Atomscatm 30075   AtLatcal 30076   HLchlt 30162   LHypclh 30795   LTrncltrn 30912   trLctrl 30969
This theorem is referenced by:  cdlemc3  31004
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-undef 6314  df-riota 6320  df-map 6790  df-poset 14096  df-plt 14108  df-lub 14124  df-glb 14125  df-join 14126  df-meet 14127  df-p0 14161  df-p1 14162  df-lat 14168  df-clat 14230  df-oposet 29988  df-ol 29990  df-oml 29991  df-covers 30078  df-ats 30079  df-atl 30110  df-cvlat 30134  df-hlat 30163  df-lhyp 30799  df-laut 30800  df-ldil 30915  df-ltrn 30916  df-trl 30970
  Copyright terms: Public domain W3C validator