Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlnle Unicode version

Theorem trlnle 29279
Description: The atom not under the fiducial co-atom  W is not less than the trace of a lattice translation. Part of proof of Lemma C in [Crawley] p. 112. (Contributed by NM, 26-May-2012.)
Hypotheses
Ref Expression
trlne.l  |-  .<_  =  ( le `  K )
trlne.a  |-  A  =  ( Atoms `  K )
trlne.h  |-  H  =  ( LHyp `  K
)
trlne.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlne.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlnle  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  ( R `  F
) )

Proof of Theorem trlnle
StepHypRef Expression
1 simpl1l 1011 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  K  e.  HL )
2 hlatl 28454 . . . . 5  |-  ( K  e.  HL  ->  K  e.  AtLat )
31, 2syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  K  e.  AtLat )
4 simpl3l 1015 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  P  e.  A )
5 trlne.l . . . . 5  |-  .<_  =  ( le `  K )
6 eqid 2253 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
7 trlne.a . . . . 5  |-  A  =  ( Atoms `  K )
85, 6, 7atnle0 28403 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  A )  ->  -.  P  .<_  ( 0. `  K ) )
93, 4, 8syl2anc 645 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  -.  P  .<_  ( 0. `  K ) )
10 simpl1 963 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( K  e.  HL  /\  W  e.  H ) )
11 simpl3 965 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
12 simpl2 964 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  F  e.  T )
13 simpr 449 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( F `  P )  =  P )
14 trlne.h . . . . . 6  |-  H  =  ( LHyp `  K
)
15 trlne.t . . . . . 6  |-  T  =  ( ( LTrn `  K
) `  W )
16 trlne.r . . . . . 6  |-  R  =  ( ( trL `  K
) `  W )
175, 6, 7, 14, 15, 16trl0 29263 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =  P ) )  ->  ( R `  F )  =  ( 0. `  K ) )
1810, 11, 12, 13, 17syl112anc 1191 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( R `  F )  =  ( 0. `  K ) )
1918breq2d 3932 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  ( P  .<_  ( R `  F )  <->  P  .<_  ( 0. `  K ) ) )
209, 19mtbird 294 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =  P )  ->  -.  P  .<_  ( R `  F ) )
215, 7, 14, 15, 16trlne 29278 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  =/=  ( R `  F ) )
2221adantr 453 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  P  =/=  ( R `  F
) )
23 simpl1l 1011 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  K  e.  HL )
2423, 2syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  K  e.  AtLat )
25 simpl3l 1015 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  P  e.  A )
26 simpl1 963 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( K  e.  HL  /\  W  e.  H ) )
27 simpl3 965 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( P  e.  A  /\  -.  P  .<_  W ) )
28 simpl2 964 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  F  e.  T )
29 simpr 449 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( F `  P )  =/=  P )
305, 7, 14, 15, 16trlat 29262 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( F  e.  T  /\  ( F `  P )  =/=  P ) )  ->  ( R `  F )  e.  A
)
3126, 27, 28, 29, 30syl112anc 1191 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( R `  F )  e.  A )
325, 7atncmp 28406 . . . 4  |-  ( ( K  e.  AtLat  /\  P  e.  A  /\  ( R `  F )  e.  A )  ->  ( -.  P  .<_  ( R `
 F )  <->  P  =/=  ( R `  F ) ) )
3324, 25, 31, 32syl3anc 1187 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  ( -.  P  .<_  ( R `
 F )  <->  P  =/=  ( R `  F ) ) )
3422, 33mpbird 225 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  ( F `
 P )  =/= 
P )  ->  -.  P  .<_  ( R `  F ) )
3520, 34pm2.61dane 2490 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  -.  P  .<_  ( R `  F
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621    =/= wne 2412   class class class wbr 3920   ` cfv 4592   lecple 13089   0.cp0 13987   Atomscatm 28357   AtLatcal 28358   HLchlt 28444   LHypclh 29077   LTrncltrn 29194   trLctrl 29251
This theorem is referenced by:  cdlemc3  29286
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-iota 6143  df-undef 6182  df-riota 6190  df-map 6660  df-poset 13924  df-plt 13936  df-lub 13952  df-glb 13953  df-join 13954  df-meet 13955  df-p0 13989  df-p1 13990  df-lat 13996  df-clat 14058  df-oposet 28270  df-ol 28272  df-oml 28273  df-covers 28360  df-ats 28361  df-atl 28392  df-cvlat 28416  df-hlat 28445  df-lhyp 29081  df-laut 29082  df-ldil 29197  df-ltrn 29198  df-trl 29252
  Copyright terms: Public domain W3C validator