Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval Structured version   Unicode version

Theorem trlval 30896
Description: The value of the trace of a lattice translation. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlset.b  |-  B  =  ( Base `  K
)
trlset.l  |-  .<_  =  ( le `  K )
trlset.j  |-  .\/  =  ( join `  K )
trlset.m  |-  ./\  =  ( meet `  K )
trlset.a  |-  A  =  ( Atoms `  K )
trlset.h  |-  H  =  ( LHyp `  K
)
trlset.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlset.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlval  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  ( R `  F )  =  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  ( F `  p ) )  ./\  W )
) ) )
Distinct variable groups:    A, p    x, B    x, p, K    W, p, x    F, p, x
Allowed substitution hints:    A( x)    B( p)    R( x, p)    T( x, p)    H( x, p)    .\/ ( x, p)    .<_ ( x, p)    ./\ (
x, p)    V( x, p)

Proof of Theorem trlval
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 trlset.b . . . 4  |-  B  =  ( Base `  K
)
2 trlset.l . . . 4  |-  .<_  =  ( le `  K )
3 trlset.j . . . 4  |-  .\/  =  ( join `  K )
4 trlset.m . . . 4  |-  ./\  =  ( meet `  K )
5 trlset.a . . . 4  |-  A  =  ( Atoms `  K )
6 trlset.h . . . 4  |-  H  =  ( LHyp `  K
)
7 trlset.t . . . 4  |-  T  =  ( ( LTrn `  K
) `  W )
8 trlset.r . . . 4  |-  R  =  ( ( trL `  K
) `  W )
91, 2, 3, 4, 5, 6, 7, 8trlset 30895 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  R  =  ( f  e.  T  |->  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p 
.\/  ( f `  p ) )  ./\  W ) ) ) ) )
109fveq1d 5722 . 2  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( R `  F
)  =  ( ( f  e.  T  |->  (
iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  W )
) ) ) `  F ) )
11 fveq1 5719 . . . . . . . . 9  |-  ( f  =  F  ->  (
f `  p )  =  ( F `  p ) )
1211oveq2d 6089 . . . . . . . 8  |-  ( f  =  F  ->  (
p  .\/  ( f `  p ) )  =  ( p  .\/  ( F `  p )
) )
1312oveq1d 6088 . . . . . . 7  |-  ( f  =  F  ->  (
( p  .\/  (
f `  p )
)  ./\  W )  =  ( ( p 
.\/  ( F `  p ) )  ./\  W ) )
1413eqeq2d 2446 . . . . . 6  |-  ( f  =  F  ->  (
x  =  ( ( p  .\/  ( f `
 p ) ) 
./\  W )  <->  x  =  ( ( p  .\/  ( F `  p ) )  ./\  W )
) )
1514imbi2d 308 . . . . 5  |-  ( f  =  F  ->  (
( -.  p  .<_  W  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  W )
)  <->  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  ( F `  p ) )  ./\  W )
) ) )
1615ralbidv 2717 . . . 4  |-  ( f  =  F  ->  ( A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  W )
)  <->  A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  ( F `  p )
)  ./\  W )
) ) )
1716riotabidv 6543 . . 3  |-  ( f  =  F  ->  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( (
p  .\/  ( f `  p ) )  ./\  W ) ) )  =  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  ( F `  p )
)  ./\  W )
) ) )
18 eqid 2435 . . 3  |-  ( f  e.  T  |->  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p 
.\/  ( f `  p ) )  ./\  W ) ) ) )  =  ( f  e.  T  |->  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  ( f `  p
) )  ./\  W
) ) ) )
19 riotaex 6545 . . 3  |-  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p 
.\/  ( F `  p ) )  ./\  W ) ) )  e. 
_V
2017, 18, 19fvmpt 5798 . 2  |-  ( F  e.  T  ->  (
( f  e.  T  |->  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  (
f `  p )
)  ./\  W )
) ) ) `  F )  =  (
iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  ( F `  p )
)  ./\  W )
) ) )
2110, 20sylan9eq 2487 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  T )  ->  ( R `  F )  =  ( iota_ x  e.  B A. p  e.  A  ( -.  p  .<_  W  ->  x  =  ( ( p  .\/  ( F `  p ) )  ./\  W )
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   class class class wbr 4204    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   iota_crio 6534   Basecbs 13461   lecple 13528   joincjn 14393   meetcmee 14394   Atomscatm 29998   LHypclh 30718   LTrncltrn 30835   trLctrl 30892
This theorem is referenced by:  trlval2  30897
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-riota 6541  df-trl 30893
  Copyright terms: Public domain W3C validator