Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredlem1 Structured version   Unicode version

Theorem trpredlem1 25536
Description: Technical lemma for transitive predecessors properties. All values of the transitive predecessors' underlying function are subsets of the base set. (Contributed by Scott Fenton, 28-Apr-2012.)
Assertion
Ref Expression
trpredlem1  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
Distinct variable groups:    A, a,
y    R, a, y    X, a
Allowed substitution hints:    A( i)    B( y, i, a)    R( i)    X( y, i)

Proof of Theorem trpredlem1
Dummy variables  e 
j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0suc 4898 . . 3  |-  ( i  e.  om  ->  (
i  =  (/)  \/  E. j  e.  om  i  =  suc  j ) )
2 fr0g 6722 . . . . . 6  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
3 predss 25477 . . . . . 6  |-  Pred ( R ,  A ,  X )  C_  A
42, 3syl6eqss 3384 . . . . 5  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  C_  A )
5 fveq2 5757 . . . . . 6  |-  ( i  =  (/)  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  (/) ) )
65sseq1d 3361 . . . . 5  |-  ( i  =  (/)  ->  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A  <->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  C_  A )
)
74, 6syl5ibr 214 . . . 4  |-  ( i  =  (/)  ->  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
) )
8 nfcv 2578 . . . . . . . . . . 11  |-  F/_ a Pred ( R ,  A ,  X )
9 nfcv 2578 . . . . . . . . . . 11  |-  F/_ a
j
10 nfmpt1 4323 . . . . . . . . . . . . . . 15  |-  F/_ a
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) )
1110, 8nfrdg 6701 . . . . . . . . . . . . . 14  |-  F/_ a rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )
12 nfcv 2578 . . . . . . . . . . . . . 14  |-  F/_ a om
1311, 12nfres 5177 . . . . . . . . . . . . 13  |-  F/_ a
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )
1413, 9nffv 5764 . . . . . . . . . . . 12  |-  F/_ a
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )
15 nfcv 2578 . . . . . . . . . . . 12  |-  F/_ a Pred ( R ,  A ,  e )
1614, 15nfiun 4143 . . . . . . . . . . 11  |-  F/_ a U_ e  e.  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )
17 predeq3 25474 . . . . . . . . . . . . . 14  |-  ( y  =  e  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
e ) )
1817cbviunv 4154 . . . . . . . . . . . . 13  |-  U_ y  e.  a  Pred ( R ,  A ,  y )  =  U_ e  e.  a  Pred ( R ,  A ,  e )
1918mpteq2i 4317 . . . . . . . . . . . 12  |-  ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) )  =  ( a  e.  _V  |->  U_ e  e.  a  Pred ( R ,  A , 
e ) )
20 rdgeq1 6698 . . . . . . . . . . . 12  |-  ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) )  =  ( a  e.  _V  |->  U_ e  e.  a  Pred ( R ,  A , 
e ) )  ->  rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( a  e.  _V  |->  U_ e  e.  a  Pred ( R ,  A ,  e ) ) ,  Pred ( R ,  A ,  X ) ) )
21 reseq1 5169 . . . . . . . . . . . 12  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( a  e.  _V  |->  U_ e  e.  a  Pred ( R ,  A ,  e ) ) ,  Pred ( R ,  A ,  X ) )  -> 
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )  =  ( rec ( ( a  e.  _V  |->  U_ e  e.  a  Pred ( R ,  A , 
e ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) )
2219, 20, 21mp2b 10 . . . . . . . . . . 11  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ( rec ( ( a  e. 
_V  |->  U_ e  e.  a 
Pred ( R ,  A ,  e )
) ,  Pred ( R ,  A ,  X ) )  |`  om )
23 iuneq1 4130 . . . . . . . . . . 11  |-  ( a  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  ->  U_ e  e.  a 
Pred ( R ,  A ,  e )  =  U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e ) )
248, 9, 16, 22, 23frsucmpt 6724 . . . . . . . . . 10  |-  ( ( j  e.  om  /\  U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  e )  e.  _V )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  =  U_ e  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  e )
)
25 iunss 4156 . . . . . . . . . . 11  |-  ( U_ e  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  e )  C_  A  <->  A. e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )  C_  A
)
26 predss 25477 . . . . . . . . . . . 12  |-  Pred ( R ,  A , 
e )  C_  A
2726a1i 11 . . . . . . . . . . 11  |-  ( e  e.  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  ->  Pred ( R ,  A ,  e )  C_  A )
2825, 27mprgbir 2782 . . . . . . . . . 10  |-  U_ e  e.  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )  C_  A
2924, 28syl6eqss 3384 . . . . . . . . 9  |-  ( ( j  e.  om  /\  U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )
Pred ( R ,  A ,  e )  e.  _V )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  C_  A
)
308, 9, 16, 22, 23frsucmptn 6725 . . . . . . . . . . 11  |-  ( -. 
U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )  e.  _V  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  =  (/) )
3130adantl 454 . . . . . . . . . 10  |-  ( ( j  e.  om  /\  -.  U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )  e.  _V )  ->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  =  (/) )
32 0ss 3641 . . . . . . . . . 10  |-  (/)  C_  A
3331, 32syl6eqss 3384 . . . . . . . . 9  |-  ( ( j  e.  om  /\  -.  U_ e  e.  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j ) Pred ( R ,  A , 
e )  e.  _V )  ->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  C_  A )
3429, 33pm2.61dan 768 . . . . . . . 8  |-  ( j  e.  om  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j )  C_  A
)
3534adantr 453 . . . . . . 7  |-  ( ( j  e.  om  /\  i  =  suc  j )  ->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  C_  A )
36 fveq2 5757 . . . . . . . . 9  |-  ( i  =  suc  j  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  =  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  j ) )
3736sseq1d 3361 . . . . . . . 8  |-  ( i  =  suc  j  -> 
( ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  A  <->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  C_  A )
)
3837adantl 454 . . . . . . 7  |-  ( ( j  e.  om  /\  i  =  suc  j )  ->  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  A  <->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  j
)  C_  A )
)
3935, 38mpbird 225 . . . . . 6  |-  ( ( j  e.  om  /\  i  =  suc  j )  ->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  A )
4039rexlimiva 2831 . . . . 5  |-  ( E. j  e.  om  i  =  suc  j  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
4140a1d 24 . . . 4  |-  ( E. j  e.  om  i  =  suc  j  ->  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
) )
427, 41jaoi 370 . . 3  |-  ( ( i  =  (/)  \/  E. j  e.  om  i  =  suc  j )  -> 
( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  A ) )
431, 42syl 16 . 2  |-  ( i  e.  om  ->  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
) )
44 nfvres 5789 . . . 4  |-  ( -.  i  e.  om  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  =  (/) )
4544, 32syl6eqss 3384 . . 3  |-  ( -.  i  e.  om  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
4645a1d 24 . 2  |-  ( -.  i  e.  om  ->  (
Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  A ) )
4743, 46pm2.61i 159 1  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360    = wceq 1653    e. wcel 1727   E.wrex 2712   _Vcvv 2962    C_ wss 3306   (/)c0 3613   U_ciun 4117    e. cmpt 4291   suc csuc 4612   omcom 4874    |` cres 4909   ` cfv 5483   reccrdg 6696   Predcpred 25469
This theorem is referenced by:  trpredss  25538  trpredtr  25539  trpredmintr  25540  trpredrec  25547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-recs 6662  df-rdg 6697  df-pred 25470
  Copyright terms: Public domain W3C validator