Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsbc Unicode version

Theorem trsbc 28360
Description: Formula-building inference rule for class substitution, substituting a class variable for the set variable of the transitivity predicate. trsbc 28360 is trsbcVD 28726 without virtual deductions and was automatically derived from trsbcVD 28726 using the tools program translate..without..overwriting.cmd and Metamath's minimize command. (Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsbc  |-  ( A  e.  V  ->  ( [. A  /  x ]. Tr  x  <->  Tr  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem trsbc
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftr2 4117 . . 3  |-  ( Tr  x  <->  A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
21sbcbiiOLD 3049 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
3 sbcalg 3041 . . . 4  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
4 sbcalg 3041 . . . . . 6  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
5 pm3.31 432 . . . . . . . . . 10  |-  ( ( z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
6 pm3.3 431 . . . . . . . . . 10  |-  ( ( ( z  e.  y  /\  y  e.  x
)  ->  z  e.  x )  ->  (
z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) ) )
75, 6impbii 180 . . . . . . . . 9  |-  ( ( z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
87sbcbiiOLD 3049 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
9 sbcim2g 28358 . . . . . . . . . 10  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) ) )
10 biidd 228 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
z  e.  y  <->  z  e.  y ) )
1110sbcieg 3025 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) )
12 sbcel2gv 3053 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( [. A  /  x ]. y  e.  x  <->  y  e.  A ) )
13 sbcel2gv 3053 . . . . . . . . . . 11  |-  ( A  e.  V  ->  ( [. A  /  x ]. z  e.  x  <->  z  e.  A ) )
14 imbi13 28339 . . . . . . . . . . 11  |-  ( (
[. A  /  x ]. z  e.  y  <->  z  e.  y )  -> 
( ( [. A  /  x ]. y  e.  x  <->  y  e.  A
)  ->  ( ( [. A  /  x ]. z  e.  x  <->  z  e.  A )  -> 
( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ) ) )
1511, 12, 13, 14syl3c 57 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x
) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) )
169, 15bitrd 244 . . . . . . . . 9  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) )
17 pm3.31 432 . . . . . . . . . 10  |-  ( ( z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) )  ->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
18 pm3.3 431 . . . . . . . . . 10  |-  ( ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A )  ->  (
z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) ) )
1917, 18impbii 180 . . . . . . . . 9  |-  ( ( z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
2016, 19syl6bb 252 . . . . . . . 8  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )
218, 20bitr3d 246 . . . . . . 7  |-  ( A  e.  V  ->  ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )
2221albidv 1613 . . . . . 6  |-  ( A  e.  V  ->  ( A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )
234, 22bitrd 244 . . . . 5  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )
2423albidv 1613 . . . 4  |-  ( A  e.  V  ->  ( A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x
)  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )
253, 24bitrd 244 . . 3  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )
26 dftr2 4117 . . 3  |-  ( Tr  A  <->  A. z A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
2725, 26syl6bbr 254 . 2  |-  ( A  e.  V  ->  ( [. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A
) )
282, 27bitrd 244 1  |-  ( A  e.  V  ->  ( [. A  /  x ]. Tr  x  <->  Tr  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1529    = wceq 1625    e. wcel 1686   [.wsbc 2993   Tr wtr 4115
This theorem is referenced by:  truniALT  28361  truniALTVD  28727  trintALTVD  28729  trintALT  28730
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1535  ax-5 1546  ax-17 1605  ax-9 1637  ax-8 1645  ax-6 1705  ax-7 1710  ax-11 1717  ax-12 1868  ax-ext 2266
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1531  df-nf 1534  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-v 2792  df-sbc 2994  df-in 3161  df-ss 3168  df-uni 3830  df-tr 4116
  Copyright terms: Public domain W3C validator