Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsspwALT Unicode version

Theorem trsspwALT 27379
Description: Virtual deduction proof of the left-to-right implication of dftr4 4015. A transitive class is a subset of its power class. This proof corresponds to the virtual deduction proof of dftr4 4015 without accumulating results. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsspwALT  |-  ( Tr  A  ->  A  C_  ~P A )

Proof of Theorem trsspwALT
StepHypRef Expression
1 dfss2 3092 . . 3  |-  ( A 
C_  ~P A  <->  A. x
( x  e.  A  ->  x  e.  ~P A
) )
2 idn1 27132 . . . . . . 7  |-  (. Tr  A 
->.  Tr  A ).
3 idn2 27172 . . . . . . 7  |-  (. Tr  A ,. x  e.  A  ->.  x  e.  A ).
4 trss 4019 . . . . . . 7  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
52, 3, 4e12 27286 . . . . . 6  |-  (. Tr  A ,. x  e.  A  ->.  x 
C_  A ).
6 vex 2730 . . . . . . 7  |-  x  e. 
_V
76elpw 3536 . . . . . 6  |-  ( x  e.  ~P A  <->  x  C_  A
)
85, 7e2bir 27192 . . . . 5  |-  (. Tr  A ,. x  e.  A  ->.  x  e.  ~P A ).
98in2 27164 . . . 4  |-  (. Tr  A 
->.  ( x  e.  A  ->  x  e.  ~P A
) ).
109gen11 27175 . . 3  |-  (. Tr  A 
->.  A. x ( x  e.  A  ->  x  e.  ~P A ) ).
11 bi2 191 . . 3  |-  ( ( A  C_  ~P A  <->  A. x ( x  e.  A  ->  x  e.  ~P A ) )  -> 
( A. x ( x  e.  A  ->  x  e.  ~P A
)  ->  A  C_  ~P A ) )
121, 10, 11e01 27250 . 2  |-  (. Tr  A 
->.  A  C_  ~P A ).
1312in1 27129 1  |-  ( Tr  A  ->  A  C_  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178   A.wal 1532    e. wcel 1621    C_ wss 3078   ~Pcpw 3530   Tr wtr 4010
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ral 2513  df-v 2729  df-in 3085  df-ss 3089  df-pw 3532  df-uni 3728  df-tr 4011  df-vd1 27128  df-vd2 27137
  Copyright terms: Public domain W3C validator