MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwe Unicode version

Theorem tskwe 7771
Description: A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
tskwe  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  A  e.  dom  card )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem tskwe
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4325 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  _V )
2 rabexg 4295 . . . . 5  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  x  ~<  A }  e.  _V )
3 incom 3477 . . . . . 6  |-  ( { x  e.  ~P A  |  x  ~<  A }  i^i  On )  =  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )
4 inex1g 4288 . . . . . 6  |-  ( { x  e.  ~P A  |  x  ~<  A }  e.  _V  ->  ( {
x  e.  ~P A  |  x  ~<  A }  i^i  On )  e.  _V )
53, 4syl5eqelr 2473 . . . . 5  |-  ( { x  e.  ~P A  |  x  ~<  A }  e.  _V  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } )  e.  _V )
61, 2, 53syl 19 . . . 4  |-  ( A  e.  V  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e. 
_V )
7 inss1 3505 . . . . . . . . . . 11  |-  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  C_  On
87sseli 3288 . . . . . . . . . 10  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  z  e.  On )
9 onelon 4548 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  e.  On )
109ancoms 440 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  e.  On )  ->  y  e.  On )
118, 10sylan2 461 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  e.  On )
12 onelss 4565 . . . . . . . . . . . . . 14  |-  ( z  e.  On  ->  (
y  e.  z  -> 
y  C_  z )
)
1312impcom 420 . . . . . . . . . . . . 13  |-  ( ( y  e.  z  /\  z  e.  On )  ->  y  C_  z )
148, 13sylan2 461 . . . . . . . . . . . 12  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  C_  z )
15 inss2 3506 . . . . . . . . . . . . . . . . 17  |-  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  C_  { x  e.  ~P A  |  x 
~<  A }
1615sseli 3288 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  z  e.  { x  e.  ~P A  |  x  ~<  A }
)
17 breq1 4157 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
x  ~<  A  <->  z  ~<  A ) )
1817elrab 3036 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { x  e. 
~P A  |  x 
~<  A }  <->  ( z  e.  ~P A  /\  z  ~<  A ) )
1916, 18sylib 189 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  ( z  e.  ~P A  /\  z  ~<  A ) )
2019simpld 446 . . . . . . . . . . . . . 14  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  z  e.  ~P A )
2120elpwid 3752 . . . . . . . . . . . . 13  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  z  C_  A )
2221adantl 453 . . . . . . . . . . . 12  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
z  C_  A )
2314, 22sstrd 3302 . . . . . . . . . . 11  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  C_  A )
24 vex 2903 . . . . . . . . . . . 12  |-  y  e. 
_V
2524elpw 3749 . . . . . . . . . . 11  |-  ( y  e.  ~P A  <->  y  C_  A )
2623, 25sylibr 204 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  e.  ~P A
)
27 vex 2903 . . . . . . . . . . . 12  |-  z  e. 
_V
28 ssdomg 7090 . . . . . . . . . . . 12  |-  ( z  e.  _V  ->  (
y  C_  z  ->  y  ~<_  z ) )
2927, 14, 28mpsyl 61 . . . . . . . . . . 11  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  ~<_  z )
3019simprd 450 . . . . . . . . . . . 12  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  z  ~<  A )
3130adantl 453 . . . . . . . . . . 11  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
z  ~<  A )
32 domsdomtr 7179 . . . . . . . . . . 11  |-  ( ( y  ~<_  z  /\  z  ~<  A )  ->  y  ~<  A )
3329, 31, 32syl2anc 643 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  ~<  A )
34 breq1 4157 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  ~<  A  <->  y  ~<  A ) )
3534elrab 3036 . . . . . . . . . 10  |-  ( y  e.  { x  e. 
~P A  |  x 
~<  A }  <->  ( y  e.  ~P A  /\  y  ~<  A ) )
3626, 33, 35sylanbrc 646 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  e.  { x  e.  ~P A  |  x 
~<  A } )
37 elin 3474 . . . . . . . . 9  |-  ( y  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  <->  ( y  e.  On  /\  y  e. 
{ x  e.  ~P A  |  x  ~<  A } ) )
3811, 36, 37sylanbrc 646 . . . . . . . 8  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  e.  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } ) )
3938gen2 1553 . . . . . . 7  |-  A. y A. z ( ( y  e.  z  /\  z  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) )  ->  y  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) )
40 dftr2 4246 . . . . . . 7  |-  ( Tr  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  <->  A. y A. z
( ( y  e.  z  /\  z  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) )  ->  y  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) ) )
4139, 40mpbir 201 . . . . . 6  |-  Tr  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )
42 ordon 4704 . . . . . 6  |-  Ord  On
43 trssord 4540 . . . . . 6  |-  ( ( Tr  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  /\  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } )  C_  On  /\ 
Ord  On )  ->  Ord  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } ) )
4441, 7, 42, 43mp3an 1279 . . . . 5  |-  Ord  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )
45 elong 4531 . . . . 5  |-  ( ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  e. 
_V  ->  ( ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  e.  On  <->  Ord  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) ) )
4644, 45mpbiri 225 . . . 4  |-  ( ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  e. 
_V  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  e.  On )
476, 46syl 16 . . 3  |-  ( A  e.  V  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e.  On )
4847adantr 452 . 2  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e.  On )
49 simpr 448 . . . . 5  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  { x  e.  ~P A  |  x 
~<  A }  C_  A
)
5015, 49syl5ss 3303 . . . 4  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  C_  A )
51 ssdomg 7090 . . . . 5  |-  ( A  e.  V  ->  (
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  C_  A  ->  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~<_  A ) )
5251adantr 452 . . . 4  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  (
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  C_  A  ->  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~<_  A ) )
5350, 52mpd 15 . . 3  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  ~<_  A )
54 ordirr 4541 . . . . 5  |-  ( Ord  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  ->  -.  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) )
5544, 54mp1i 12 . . . 4  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  -.  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) )
56473ad2ant1 978 . . . . . 6  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A  /\  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  ~<  A )  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  e.  On )
57 elpw2g 4305 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  e.  ~P A  <->  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  C_  A ) )
5857adantr 452 . . . . . . . . 9  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  (
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  e.  ~P A  <->  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  C_  A ) )
5950, 58mpbird 224 . . . . . . . 8  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e. 
~P A )
60593adant3 977 . . . . . . 7  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A  /\  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  ~<  A )  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  e.  ~P A
)
61 simp3 959 . . . . . . 7  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A  /\  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  ~<  A )  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ~<  A )
62 nfcv 2524 . . . . . . . . 9  |-  F/_ x On
63 nfrab1 2832 . . . . . . . . 9  |-  F/_ x { x  e.  ~P A  |  x  ~<  A }
6462, 63nfin 3491 . . . . . . . 8  |-  F/_ x
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)
65 nfcv 2524 . . . . . . . 8  |-  F/_ x ~P A
66 nfcv 2524 . . . . . . . . 9  |-  F/_ x  ~<
67 nfcv 2524 . . . . . . . . 9  |-  F/_ x A
6864, 66, 67nfbr 4198 . . . . . . . 8  |-  F/ x
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  ~<  A
69 breq1 4157 . . . . . . . 8  |-  ( x  =  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  ( x  ~<  A  <->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ~<  A ) )
7064, 65, 68, 69elrabf 3035 . . . . . . 7  |-  ( ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  e. 
{ x  e.  ~P A  |  x  ~<  A }  <->  ( ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  e.  ~P A  /\  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ~<  A ) )
7160, 61, 70sylanbrc 646 . . . . . 6  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A  /\  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  ~<  A )  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  e.  { x  e.  ~P A  |  x 
~<  A } )
72 elin 3474 . . . . . 6  |-  ( ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  <->  ( ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  e.  On  /\  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  e.  { x  e.  ~P A  |  x 
~<  A } ) )
7356, 71, 72sylanbrc 646 . . . . 5  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A  /\  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  ~<  A )  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  e.  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } ) )
74733expia 1155 . . . 4  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  (
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  ~<  A  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) ) )
7555, 74mtod 170 . . 3  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  -.  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~<  A )
76 bren2 7075 . . 3  |-  ( ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~~  A 
<->  ( ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ~<_  A  /\  -.  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~<  A ) )
7753, 75, 76sylanbrc 646 . 2  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  ~~  A )
78 isnumi 7767 . 2  |-  ( ( ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  e.  On  /\  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~~  A )  ->  A  e.  dom  card )
7948, 77, 78syl2anc 643 1  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  A  e.  dom  card )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936   A.wal 1546    e. wcel 1717   {crab 2654   _Vcvv 2900    i^i cin 3263    C_ wss 3264   ~Pcpw 3743   class class class wbr 4154   Tr wtr 4244   Ord word 4522   Oncon0 4523   dom cdm 4819    ~~ cen 7043    ~<_ cdom 7044    ~< csdm 7045   cardccrd 7756
This theorem is referenced by:  tskwe2  8582  grothac  8639
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-rab 2659  df-v 2902  df-sbc 3106  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-card 7760
  Copyright terms: Public domain W3C validator