MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem3 Structured version   Unicode version

Theorem ttukeylem3 8396
Description: Lemma for ttukey 8403. (Contributed by Mario Carneiro, 11-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1  |-  ( ph  ->  F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
ttukeylem.2  |-  ( ph  ->  B  e.  A )
ttukeylem.3  |-  ( ph  ->  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )
ttukeylem.4  |-  G  = recs ( ( z  e. 
_V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `
 U. dom  z
)  u.  if ( ( ( z `  U. dom  z )  u. 
{ ( F `  U. dom  z ) } )  e.  A ,  { ( F `  U. dom  z ) } ,  (/) ) ) ) ) )
Assertion
Ref Expression
ttukeylem3  |-  ( (
ph  /\  C  e.  On )  ->  ( G `
 C )  =  if ( C  = 
U. C ,  if ( C  =  (/) ,  B ,  U. ( G " C ) ) ,  ( ( G `  U. C )  u.  if ( ( ( G `
 U. C )  u.  { ( F `
 U. C ) } )  e.  A ,  { ( F `  U. C ) } ,  (/) ) ) ) )
Distinct variable groups:    x, z, C    x, G, z    ph, z    x, A, z    x, B, z    x, F, z
Allowed substitution hint:    ph( x)

Proof of Theorem ttukeylem3
StepHypRef Expression
1 ttukeylem.4 . . . 4  |-  G  = recs ( ( z  e. 
_V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `
 U. dom  z
)  u.  if ( ( ( z `  U. dom  z )  u. 
{ ( F `  U. dom  z ) } )  e.  A ,  { ( F `  U. dom  z ) } ,  (/) ) ) ) ) )
21tfr2 6662 . . 3  |-  ( C  e.  On  ->  ( G `  C )  =  ( ( z  e.  _V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `  U. dom  z )  u.  if ( ( ( z `
 U. dom  z
)  u.  { ( F `  U. dom  z ) } )  e.  A ,  {
( F `  U. dom  z ) } ,  (/) ) ) ) ) `
 ( G  |`  C ) ) )
32adantl 454 . 2  |-  ( (
ph  /\  C  e.  On )  ->  ( G `
 C )  =  ( ( z  e. 
_V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `
 U. dom  z
)  u.  if ( ( ( z `  U. dom  z )  u. 
{ ( F `  U. dom  z ) } )  e.  A ,  { ( F `  U. dom  z ) } ,  (/) ) ) ) ) `  ( G  |`  C ) ) )
4 eqidd 2439 . . 3  |-  ( (
ph  /\  C  e.  On )  ->  ( z  e.  _V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `  U. dom  z )  u.  if ( ( ( z `
 U. dom  z
)  u.  { ( F `  U. dom  z ) } )  e.  A ,  {
( F `  U. dom  z ) } ,  (/) ) ) ) )  =  ( z  e. 
_V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `
 U. dom  z
)  u.  if ( ( ( z `  U. dom  z )  u. 
{ ( F `  U. dom  z ) } )  e.  A ,  { ( F `  U. dom  z ) } ,  (/) ) ) ) ) )
5 simpr 449 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  -> 
z  =  ( G  |`  C ) )
65dmeqd 5075 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  dom  z  =  dom  ( G  |`  C ) )
71tfr1 6661 . . . . . . . . 9  |-  G  Fn  On
8 onss 4774 . . . . . . . . . 10  |-  ( C  e.  On  ->  C  C_  On )
98ad2antlr 709 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  C  C_  On )
10 fnssres 5561 . . . . . . . . 9  |-  ( ( G  Fn  On  /\  C  C_  On )  -> 
( G  |`  C )  Fn  C )
117, 9, 10sylancr 646 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  -> 
( G  |`  C )  Fn  C )
12 fndm 5547 . . . . . . . 8  |-  ( ( G  |`  C )  Fn  C  ->  dom  ( G  |`  C )  =  C )
1311, 12syl 16 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  dom  ( G  |`  C )  =  C )
146, 13eqtrd 2470 . . . . . 6  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  dom  z  =  C
)
1514unieqd 4028 . . . . . 6  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  U. dom  z  =  U. C )
1614, 15eqeq12d 2452 . . . . 5  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  -> 
( dom  z  =  U. dom  z  <->  C  =  U. C ) )
1714eqeq1d 2446 . . . . . 6  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  -> 
( dom  z  =  (/)  <->  C  =  (/) ) )
185rneqd 5100 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  ran  z  =  ran  ( G  |`  C ) )
19 df-ima 4894 . . . . . . . 8  |-  ( G
" C )  =  ran  ( G  |`  C )
2018, 19syl6eqr 2488 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  ran  z  =  ( G " C ) )
2120unieqd 4028 . . . . . 6  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  U. ran  z  =  U. ( G " C ) )
2217, 21ifbieq2d 3761 . . . . 5  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  if ( dom  z  =  (/) ,  B ,  U. ran  z )  =  if ( C  =  (/) ,  B ,  U. ( G " C ) ) )
235, 15fveq12d 5737 . . . . . 6  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  -> 
( z `  U. dom  z )  =  ( ( G  |`  C ) `
 U. C ) )
2415fveq2d 5735 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  -> 
( F `  U. dom  z )  =  ( F `  U. C
) )
2524sneqd 3829 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  { ( F `  U. dom  z ) }  =  { ( F `
 U. C ) } )
2623, 25uneq12d 3504 . . . . . . . 8  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  -> 
( ( z `  U. dom  z )  u. 
{ ( F `  U. dom  z ) } )  =  ( ( ( G  |`  C ) `
 U. C )  u.  { ( F `
 U. C ) } ) )
2726eleq1d 2504 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  -> 
( ( ( z `
 U. dom  z
)  u.  { ( F `  U. dom  z ) } )  e.  A  <->  ( (
( G  |`  C ) `
 U. C )  u.  { ( F `
 U. C ) } )  e.  A
) )
28 eqidd 2439 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  (/)  =  (/) )
2927, 25, 28ifbieq12d 3763 . . . . . 6  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  if ( ( ( z `
 U. dom  z
)  u.  { ( F `  U. dom  z ) } )  e.  A ,  {
( F `  U. dom  z ) } ,  (/) )  =  if ( ( ( ( G  |`  C ) `  U. C )  u.  {
( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) ) )
3023, 29uneq12d 3504 . . . . 5  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  -> 
( ( z `  U. dom  z )  u.  if ( ( ( z `  U. dom  z )  u.  {
( F `  U. dom  z ) } )  e.  A ,  {
( F `  U. dom  z ) } ,  (/) ) )  =  ( ( ( G  |`  C ) `  U. C )  u.  if ( ( ( ( G  |`  C ) `  U. C )  u. 
{ ( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) ) ) )
3116, 22, 30ifbieq12d 3763 . . . 4  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  if ( dom  z  = 
U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `  U. dom  z )  u.  if ( ( ( z `
 U. dom  z
)  u.  { ( F `  U. dom  z ) } )  e.  A ,  {
( F `  U. dom  z ) } ,  (/) ) ) )  =  if ( C  = 
U. C ,  if ( C  =  (/) ,  B ,  U. ( G " C ) ) ,  ( ( ( G  |`  C ) `  U. C )  u.  if ( ( ( ( G  |`  C ) `  U. C )  u. 
{ ( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) ) ) ) )
32 onuni 4776 . . . . . . . . . 10  |-  ( C  e.  On  ->  U. C  e.  On )
3332ad3antlr 713 . . . . . . . . 9  |-  ( ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  /\  -.  C  = 
U. C )  ->  U. C  e.  On )
34 sucidg 4662 . . . . . . . . 9  |-  ( U. C  e.  On  ->  U. C  e.  suc  U. C )
3533, 34syl 16 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  /\  -.  C  = 
U. C )  ->  U. C  e.  suc  U. C )
36 eloni 4594 . . . . . . . . . . 11  |-  ( C  e.  On  ->  Ord  C )
3736ad2antlr 709 . . . . . . . . . 10  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  Ord  C )
38 orduniorsuc 4813 . . . . . . . . . 10  |-  ( Ord 
C  ->  ( C  =  U. C  \/  C  =  suc  U. C ) )
3937, 38syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  -> 
( C  =  U. C  \/  C  =  suc  U. C ) )
4039orcanai 881 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  /\  -.  C  = 
U. C )  ->  C  =  suc  U. C
)
4135, 40eleqtrrd 2515 . . . . . . 7  |-  ( ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  /\  -.  C  = 
U. C )  ->  U. C  e.  C
)
42 fvres 5748 . . . . . . 7  |-  ( U. C  e.  C  ->  ( ( G  |`  C ) `
 U. C )  =  ( G `  U. C ) )
4341, 42syl 16 . . . . . 6  |-  ( ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  /\  -.  C  = 
U. C )  -> 
( ( G  |`  C ) `  U. C )  =  ( G `  U. C
) )
4443uneq1d 3502 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  /\  -.  C  = 
U. C )  -> 
( ( ( G  |`  C ) `  U. C )  u.  {
( F `  U. C ) } )  =  ( ( G `
 U. C )  u.  { ( F `
 U. C ) } ) )
4544eleq1d 2504 . . . . . . 7  |-  ( ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  /\  -.  C  = 
U. C )  -> 
( ( ( ( G  |`  C ) `  U. C )  u. 
{ ( F `  U. C ) } )  e.  A  <->  ( ( G `  U. C )  u.  { ( F `
 U. C ) } )  e.  A
) )
4645ifbid 3759 . . . . . 6  |-  ( ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  /\  -.  C  = 
U. C )  ->  if ( ( ( ( G  |`  C ) `  U. C )  u. 
{ ( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) )  =  if ( ( ( G `  U. C )  u.  {
( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) ) )
4743, 46uneq12d 3504 . . . . 5  |-  ( ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  /\  -.  C  = 
U. C )  -> 
( ( ( G  |`  C ) `  U. C )  u.  if ( ( ( ( G  |`  C ) `  U. C )  u. 
{ ( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) ) )  =  ( ( G `  U. C )  u.  if ( ( ( G `
 U. C )  u.  { ( F `
 U. C ) } )  e.  A ,  { ( F `  U. C ) } ,  (/) ) ) )
4847ifeq2da 3767 . . . 4  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  if ( C  =  U. C ,  if ( C  =  (/) ,  B ,  U. ( G " C ) ) ,  ( ( ( G  |`  C ) `  U. C )  u.  if ( ( ( ( G  |`  C ) `  U. C )  u. 
{ ( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) ) ) )  =  if ( C  = 
U. C ,  if ( C  =  (/) ,  B ,  U. ( G " C ) ) ,  ( ( G `  U. C )  u.  if ( ( ( G `
 U. C )  u.  { ( F `
 U. C ) } )  e.  A ,  { ( F `  U. C ) } ,  (/) ) ) ) )
4931, 48eqtrd 2470 . . 3  |-  ( ( ( ph  /\  C  e.  On )  /\  z  =  ( G  |`  C ) )  ->  if ( dom  z  = 
U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `  U. dom  z )  u.  if ( ( ( z `
 U. dom  z
)  u.  { ( F `  U. dom  z ) } )  e.  A ,  {
( F `  U. dom  z ) } ,  (/) ) ) )  =  if ( C  = 
U. C ,  if ( C  =  (/) ,  B ,  U. ( G " C ) ) ,  ( ( G `  U. C )  u.  if ( ( ( G `
 U. C )  u.  { ( F `
 U. C ) } )  e.  A ,  { ( F `  U. C ) } ,  (/) ) ) ) )
50 fnfun 5545 . . . . 5  |-  ( G  Fn  On  ->  Fun  G )
517, 50ax-mp 5 . . . 4  |-  Fun  G
52 simpr 449 . . . 4  |-  ( (
ph  /\  C  e.  On )  ->  C  e.  On )
53 resfunexg 5960 . . . 4  |-  ( ( Fun  G  /\  C  e.  On )  ->  ( G  |`  C )  e. 
_V )
5451, 52, 53sylancr 646 . . 3  |-  ( (
ph  /\  C  e.  On )  ->  ( G  |`  C )  e.  _V )
55 ttukeylem.2 . . . . . 6  |-  ( ph  ->  B  e.  A )
56 elex 2966 . . . . . 6  |-  ( B  e.  A  ->  B  e.  _V )
5755, 56syl 16 . . . . 5  |-  ( ph  ->  B  e.  _V )
58 funimaexg 5533 . . . . . . 7  |-  ( ( Fun  G  /\  C  e.  On )  ->  ( G " C )  e. 
_V )
5951, 58mpan 653 . . . . . 6  |-  ( C  e.  On  ->  ( G " C )  e. 
_V )
60 uniexg 4709 . . . . . 6  |-  ( ( G " C )  e.  _V  ->  U. ( G " C )  e. 
_V )
6159, 60syl 16 . . . . 5  |-  ( C  e.  On  ->  U. ( G " C )  e. 
_V )
62 ifcl 3777 . . . . 5  |-  ( ( B  e.  _V  /\  U. ( G " C
)  e.  _V )  ->  if ( C  =  (/) ,  B ,  U. ( G " C ) )  e.  _V )
6357, 61, 62syl2an 465 . . . 4  |-  ( (
ph  /\  C  e.  On )  ->  if ( C  =  (/) ,  B ,  U. ( G " C ) )  e. 
_V )
64 fvex 5745 . . . . 5  |-  ( G `
 U. C )  e.  _V
65 snex 4408 . . . . . 6  |-  { ( F `  U. C
) }  e.  _V
66 0ex 4342 . . . . . 6  |-  (/)  e.  _V
6765, 66ifex 3799 . . . . 5  |-  if ( ( ( G `  U. C )  u.  {
( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) )  e.  _V
6864, 67unex 4710 . . . 4  |-  ( ( G `  U. C
)  u.  if ( ( ( G `  U. C )  u.  {
( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) ) )  e.  _V
69 ifcl 3777 . . . 4  |-  ( ( if ( C  =  (/) ,  B ,  U. ( G " C ) )  e.  _V  /\  ( ( G `  U. C )  u.  if ( ( ( G `
 U. C )  u.  { ( F `
 U. C ) } )  e.  A ,  { ( F `  U. C ) } ,  (/) ) )  e.  _V )  ->  if ( C  =  U. C ,  if ( C  =  (/) ,  B ,  U. ( G " C ) ) ,  ( ( G `
 U. C )  u.  if ( ( ( G `  U. C )  u.  {
( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) ) ) )  e. 
_V )
7063, 68, 69sylancl 645 . . 3  |-  ( (
ph  /\  C  e.  On )  ->  if ( C  =  U. C ,  if ( C  =  (/) ,  B ,  U. ( G " C ) ) ,  ( ( G `  U. C
)  u.  if ( ( ( G `  U. C )  u.  {
( F `  U. C ) } )  e.  A ,  {
( F `  U. C ) } ,  (/) ) ) )  e. 
_V )
714, 49, 54, 70fvmptd 5813 . 2  |-  ( (
ph  /\  C  e.  On )  ->  ( ( z  e.  _V  |->  if ( dom  z  = 
U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `  U. dom  z )  u.  if ( ( ( z `
 U. dom  z
)  u.  { ( F `  U. dom  z ) } )  e.  A ,  {
( F `  U. dom  z ) } ,  (/) ) ) ) ) `
 ( G  |`  C ) )  =  if ( C  = 
U. C ,  if ( C  =  (/) ,  B ,  U. ( G " C ) ) ,  ( ( G `  U. C )  u.  if ( ( ( G `
 U. C )  u.  { ( F `
 U. C ) } )  e.  A ,  { ( F `  U. C ) } ,  (/) ) ) ) )
723, 71eqtrd 2470 1  |-  ( (
ph  /\  C  e.  On )  ->  ( G `
 C )  =  if ( C  = 
U. C ,  if ( C  =  (/) ,  B ,  U. ( G " C ) ) ,  ( ( G `  U. C )  u.  if ( ( ( G `
 U. C )  u.  { ( F `
 U. C ) } )  e.  A ,  { ( F `  U. C ) } ,  (/) ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1550    = wceq 1653    e. wcel 1726   _Vcvv 2958    \ cdif 3319    u. cun 3320    i^i cin 3321    C_ wss 3322   (/)c0 3630   ifcif 3741   ~Pcpw 3801   {csn 3816   U.cuni 4017    e. cmpt 4269   Ord word 4583   Oncon0 4584   suc csuc 4586   dom cdm 4881   ran crn 4882    |` cres 4883   "cima 4884   Fun wfun 5451    Fn wfn 5452   -1-1-onto->wf1o 5456   ` cfv 5457  recscrecs 6635   Fincfn 7112   cardccrd 7827
This theorem is referenced by:  ttukeylem4  8397  ttukeylem5  8398  ttukeylem6  8399  ttukeylem7  8400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-suc 4590  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-recs 6636
  Copyright terms: Public domain W3C validator