MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmpb Unicode version

Theorem txcmpb 17598
Description: The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmpb.1  |-  X  = 
U. R
txcmpb.2  |-  Y  = 
U. S
Assertion
Ref Expression
txcmpb  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( ( R  tX  S )  e.  Comp  <->  ( R  e.  Comp  /\  S  e.  Comp ) ) )

Proof of Theorem txcmpb
StepHypRef Expression
1 simpr 448 . . . . 5  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( R  tX  S )  e. 
Comp )
2 simplrr 738 . . . . . . 7  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  Y  =/=  (/) )
3 fo1stres 6310 . . . . . . 7  |-  ( Y  =/=  (/)  ->  ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y )
-onto-> X )
42, 3syl 16 . . . . . 6  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 1st  |`  ( X  X.  Y ) ) : ( X  X.  Y
) -onto-> X )
5 txcmpb.1 . . . . . . . . 9  |-  X  = 
U. R
6 txcmpb.2 . . . . . . . . 9  |-  Y  = 
U. S
75, 6txuni 17546 . . . . . . . 8  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y
)  =  U. ( R  tX  S ) )
87ad2antrr 707 . . . . . . 7  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( X  X.  Y )  = 
U. ( R  tX  S ) )
9 foeq2 5591 . . . . . . 7  |-  ( ( X  X.  Y )  =  U. ( R 
tX  S )  -> 
( ( 1st  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> X  <->  ( 1st  |`  ( X  X.  Y
) ) : U. ( R  tX  S )
-onto-> X ) )
108, 9syl 16 . . . . . 6  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  (
( 1st  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> X  <->  ( 1st  |`  ( X  X.  Y
) ) : U. ( R  tX  S )
-onto-> X ) )
114, 10mpbid 202 . . . . 5  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 1st  |`  ( X  X.  Y ) ) : U. ( R  tX  S ) -onto-> X )
125toptopon 16922 . . . . . . 7  |-  ( R  e.  Top  <->  R  e.  (TopOn `  X ) )
136toptopon 16922 . . . . . . 7  |-  ( S  e.  Top  <->  S  e.  (TopOn `  Y ) )
14 tx1cn 17563 . . . . . . 7  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  R ) )
1512, 13, 14syl2anb 466 . . . . . 6  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R 
tX  S )  Cn  R ) )
1615ad2antrr 707 . . . . 5  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  R
) )
175cncmp 17378 . . . . 5  |-  ( ( ( R  tX  S
)  e.  Comp  /\  ( 1st  |`  ( X  X.  Y ) ) : U. ( R  tX  S ) -onto-> X  /\  ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  R
) )  ->  R  e.  Comp )
181, 11, 16, 17syl3anc 1184 . . . 4  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  R  e.  Comp )
19 simplrl 737 . . . . . . 7  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  X  =/=  (/) )
20 fo2ndres 6311 . . . . . . 7  |-  ( X  =/=  (/)  ->  ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y )
-onto-> Y )
2119, 20syl 16 . . . . . 6  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 2nd  |`  ( X  X.  Y ) ) : ( X  X.  Y
) -onto-> Y )
22 foeq2 5591 . . . . . . 7  |-  ( ( X  X.  Y )  =  U. ( R 
tX  S )  -> 
( ( 2nd  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> Y  <->  ( 2nd  |`  ( X  X.  Y
) ) : U. ( R  tX  S )
-onto-> Y ) )
238, 22syl 16 . . . . . 6  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  (
( 2nd  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> Y  <->  ( 2nd  |`  ( X  X.  Y
) ) : U. ( R  tX  S )
-onto-> Y ) )
2421, 23mpbid 202 . . . . 5  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 2nd  |`  ( X  X.  Y ) ) : U. ( R  tX  S ) -onto-> Y )
25 tx2cn 17564 . . . . . . 7  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  S ) )
2612, 13, 25syl2anb 466 . . . . . 6  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R 
tX  S )  Cn  S ) )
2726ad2antrr 707 . . . . 5  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
) )
286cncmp 17378 . . . . 5  |-  ( ( ( R  tX  S
)  e.  Comp  /\  ( 2nd  |`  ( X  X.  Y ) ) : U. ( R  tX  S ) -onto-> Y  /\  ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
) )  ->  S  e.  Comp )
291, 24, 27, 28syl3anc 1184 . . . 4  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  S  e.  Comp )
3018, 29jca 519 . . 3  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( R  e.  Comp  /\  S  e.  Comp ) )
3130ex 424 . 2  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( ( R  tX  S )  e.  Comp  -> 
( R  e.  Comp  /\  S  e.  Comp )
) )
32 txcmp 17597 . 2  |-  ( ( R  e.  Comp  /\  S  e.  Comp )  ->  ( R  tX  S )  e. 
Comp )
3331, 32impbid1 195 1  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( ( R  tX  S )  e.  Comp  <->  ( R  e.  Comp  /\  S  e.  Comp ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   (/)c0 3572   U.cuni 3958    X. cxp 4817    |` cres 4821   -onto->wfo 5393   ` cfv 5395  (class class class)co 6021   1stc1st 6287   2ndc2nd 6288   Topctop 16882  TopOnctopon 16883    Cn ccn 17211   Compccmp 17372    tX ctx 17514
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-fin 7050  df-topgen 13595  df-top 16887  df-bases 16889  df-topon 16890  df-cn 17214  df-cmp 17373  df-tx 17516
  Copyright terms: Public domain W3C validator