MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtube Unicode version

Theorem txtube 17390
Description: The "tube lemma". If  X is compact and there is an open set  U containing the line  X  X.  { A }, then there is a "tube"  X  X.  u for some neighborhood  u of  A which is entirely contained within  U. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
txtube.x  |-  X  = 
U. R
txtube.y  |-  Y  = 
U. S
txtube.r  |-  ( ph  ->  R  e.  Comp )
txtube.s  |-  ( ph  ->  S  e.  Top )
txtube.w  |-  ( ph  ->  U  e.  ( R 
tX  S ) )
txtube.u  |-  ( ph  ->  ( X  X.  { A } )  C_  U
)
txtube.a  |-  ( ph  ->  A  e.  Y )
Assertion
Ref Expression
txtube  |-  ( ph  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
)
Distinct variable groups:    u, A    u, R    u, S    u, Y    ph, u    u, U    u, X

Proof of Theorem txtube
Dummy variables  t 
f  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txtube.r . . 3  |-  ( ph  ->  R  e.  Comp )
2 txtube.u . . . . . . . 8  |-  ( ph  ->  ( X  X.  { A } )  C_  U
)
32adantr 451 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( X  X.  { A }
)  C_  U )
4 id 19 . . . . . . . 8  |-  ( x  e.  X  ->  x  e.  X )
5 txtube.a . . . . . . . . 9  |-  ( ph  ->  A  e.  Y )
6 snidg 3699 . . . . . . . . 9  |-  ( A  e.  Y  ->  A  e.  { A } )
75, 6syl 15 . . . . . . . 8  |-  ( ph  ->  A  e.  { A } )
8 opelxpi 4758 . . . . . . . 8  |-  ( ( x  e.  X  /\  A  e.  { A } )  ->  <. x ,  A >.  e.  ( X  X.  { A }
) )
94, 7, 8syl2anr 464 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  <. x ,  A >.  e.  ( X  X.  { A }
) )
103, 9sseldd 3215 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  <. x ,  A >.  e.  U
)
11 txtube.w . . . . . . . 8  |-  ( ph  ->  U  e.  ( R 
tX  S ) )
12 txtube.s . . . . . . . . 9  |-  ( ph  ->  S  e.  Top )
13 eltx 17319 . . . . . . . . 9  |-  ( ( R  e.  Comp  /\  S  e.  Top )  ->  ( U  e.  ( R  tX  S )  <->  A. y  e.  U  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
) ) )
141, 12, 13syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( U  e.  ( R  tX  S )  <->  A. y  e.  U  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  U
) ) )
1511, 14mpbid 201 . . . . . . 7  |-  ( ph  ->  A. y  e.  U  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  U
) )
1615adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  U  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
) )
17 eleq1 2376 . . . . . . . . 9  |-  ( y  =  <. x ,  A >.  ->  ( y  e.  ( u  X.  v
)  <->  <. x ,  A >.  e.  ( u  X.  v ) ) )
1817anbi1d 685 . . . . . . . 8  |-  ( y  =  <. x ,  A >.  ->  ( ( y  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  U )  <->  ( <. x ,  A >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  U
) ) )
19182rexbidv 2620 . . . . . . 7  |-  ( y  =  <. x ,  A >.  ->  ( E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  E. u  e.  R  E. v  e.  S  ( <. x ,  A >.  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  U ) ) )
2019rspcv 2914 . . . . . 6  |-  ( <.
x ,  A >.  e.  U  ->  ( A. y  e.  U  E. u  e.  R  E. v  e.  S  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  U )  ->  E. u  e.  R  E. v  e.  S  ( <. x ,  A >.  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  U ) ) )
2110, 16, 20sylc 56 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  E. u  e.  R  E. v  e.  S  ( <. x ,  A >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  U
) )
22 opelxp 4756 . . . . . . . . . 10  |-  ( <.
x ,  A >.  e.  ( u  X.  v
)  <->  ( x  e.  u  /\  A  e.  v ) )
2322anbi1i 676 . . . . . . . . 9  |-  ( (
<. x ,  A >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  ( ( x  e.  u  /\  A  e.  v )  /\  (
u  X.  v ) 
C_  U ) )
24 anass 630 . . . . . . . . 9  |-  ( ( ( x  e.  u  /\  A  e.  v
)  /\  ( u  X.  v )  C_  U
)  <->  ( x  e.  u  /\  ( A  e.  v  /\  (
u  X.  v ) 
C_  U ) ) )
2523, 24bitri 240 . . . . . . . 8  |-  ( (
<. x ,  A >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  ( x  e.  u  /\  ( A  e.  v  /\  (
u  X.  v ) 
C_  U ) ) )
2625rexbii 2602 . . . . . . 7  |-  ( E. v  e.  S  (
<. x ,  A >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  E. v  e.  S  ( x  e.  u  /\  ( A  e.  v  /\  ( u  X.  v )  C_  U
) ) )
27 r19.42v 2728 . . . . . . 7  |-  ( E. v  e.  S  ( x  e.  u  /\  ( A  e.  v  /\  ( u  X.  v
)  C_  U )
)  <->  ( x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  (
u  X.  v ) 
C_  U ) ) )
2826, 27bitri 240 . . . . . 6  |-  ( E. v  e.  S  (
<. x ,  A >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  ( x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  (
u  X.  v ) 
C_  U ) ) )
2928rexbii 2602 . . . . 5  |-  ( E. u  e.  R  E. v  e.  S  ( <. x ,  A >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  E. u  e.  R  ( x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  ( u  X.  v
)  C_  U )
) )
3021, 29sylib 188 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  E. u  e.  R  ( x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  (
u  X.  v ) 
C_  U ) ) )
3130ralrimiva 2660 . . 3  |-  ( ph  ->  A. x  e.  X  E. u  e.  R  ( x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  ( u  X.  v
)  C_  U )
) )
32 txtube.x . . . 4  |-  X  = 
U. R
33 eleq2 2377 . . . . 5  |-  ( v  =  ( f `  u )  ->  ( A  e.  v  <->  A  e.  ( f `  u
) ) )
34 xpeq2 4741 . . . . . 6  |-  ( v  =  ( f `  u )  ->  (
u  X.  v )  =  ( u  X.  ( f `  u
) ) )
3534sseq1d 3239 . . . . 5  |-  ( v  =  ( f `  u )  ->  (
( u  X.  v
)  C_  U  <->  ( u  X.  ( f `  u
) )  C_  U
) )
3633, 35anbi12d 691 . . . 4  |-  ( v  =  ( f `  u )  ->  (
( A  e.  v  /\  ( u  X.  v )  C_  U
)  <->  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) )
3732, 36cmpcovf 17174 . . 3  |-  ( ( R  e.  Comp  /\  A. x  e.  X  E. u  e.  R  (
x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  ( u  X.  v
)  C_  U )
) )  ->  E. t  e.  ( ~P R  i^i  Fin ) ( X  = 
U. t  /\  E. f ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U ) ) ) )
381, 31, 37syl2anc 642 . 2  |-  ( ph  ->  E. t  e.  ( ~P R  i^i  Fin ) ( X  = 
U. t  /\  E. f ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U ) ) ) )
39 rint0 3939 . . . . . . . . . 10  |-  ( ran  f  =  (/)  ->  ( Y  i^i  |^| ran  f )  =  Y )
4039adantl 452 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =  (/) )  ->  ( Y  i^i  |^| ran  f )  =  Y )
41 txtube.y . . . . . . . . . . . 12  |-  Y  = 
U. S
4241topopn 16708 . . . . . . . . . . 11  |-  ( S  e.  Top  ->  Y  e.  S )
4312, 42syl 15 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  S )
4443ad3antrrr 710 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =  (/) )  ->  Y  e.  S )
4540, 44eqeltrd 2390 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =  (/) )  ->  ( Y  i^i  |^| ran  f )  e.  S )
4612ad3antrrr 710 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  S  e. 
Top )
47 simprrl 740 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  f : t --> S )
48 frn 5433 . . . . . . . . . . . . . . 15  |-  ( f : t --> S  ->  ran  f  C_  S )
4947, 48syl 15 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ran  f  C_  S )
5049adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  ran  f  C_  S )
51 simpr 447 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  ran  f  =/=  (/) )
52 inss2 3424 . . . . . . . . . . . . . . . 16  |-  ( ~P R  i^i  Fin )  C_ 
Fin
53 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  t  e.  ( ~P R  i^i  Fin ) )
5452, 53sseldi 3212 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  t  e.  Fin )
55 ffn 5427 . . . . . . . . . . . . . . . . 17  |-  ( f : t --> S  -> 
f  Fn  t )
5647, 55syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  f  Fn  t
)
57 dffn4 5495 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  t  <->  f :
t -onto-> ran  f )
5856, 57sylib 188 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  f : t
-onto->
ran  f )
59 fofi 7187 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  Fin  /\  f : t -onto-> ran  f
)  ->  ran  f  e. 
Fin )
6054, 58, 59syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ran  f  e.  Fin )
6160adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  ran  f  e.  Fin )
62 fiinopn 16703 . . . . . . . . . . . . . 14  |-  ( S  e.  Top  ->  (
( ran  f  C_  S  /\  ran  f  =/=  (/)  /\  ran  f  e. 
Fin )  ->  |^| ran  f  e.  S )
)
6362imp 418 . . . . . . . . . . . . 13  |-  ( ( S  e.  Top  /\  ( ran  f  C_  S  /\  ran  f  =/=  (/)  /\  ran  f  e.  Fin )
)  ->  |^| ran  f  e.  S )
6446, 50, 51, 61, 63syl13anc 1184 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  |^| ran  f  e.  S )
65 elssuni 3892 . . . . . . . . . . . 12  |-  ( |^| ran  f  e.  S  ->  |^| ran  f  C_  U. S
)
6664, 65syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  |^| ran  f  C_  U. S )
6766, 41syl6sseqr 3259 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  |^| ran  f  C_  Y )
68 dfss1 3407 . . . . . . . . . 10  |-  ( |^| ran  f  C_  Y  <->  ( Y  i^i  |^| ran  f )  =  |^| ran  f
)
6967, 68sylib 188 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  ( Y  i^i  |^| ran  f )  =  |^| ran  f
)
7069, 64eqeltrd 2390 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  ( Y  i^i  |^| ran  f )  e.  S )
7145, 70pm2.61dane 2557 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ( Y  i^i  |^|
ran  f )  e.  S )
725ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A  e.  Y
)
73 simprrr 741 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A. u  e.  t  ( A  e.  ( f `  u )  /\  ( u  X.  ( f `  u
) )  C_  U
) )
74 simpl 443 . . . . . . . . . . . 12  |-  ( ( A  e.  ( f `
 u )  /\  ( u  X.  (
f `  u )
)  C_  U )  ->  A  e.  ( f `
 u ) )
7574ralimi 2652 . . . . . . . . . . 11  |-  ( A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U )  ->  A. u  e.  t  A  e.  ( f `  u ) )
7673, 75syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A. u  e.  t  A  e.  ( f `
 u ) )
77 eliin 3947 . . . . . . . . . . 11  |-  ( A  e.  Y  ->  ( A  e.  |^|_ u  e.  t  ( f `  u )  <->  A. u  e.  t  A  e.  ( f `  u
) ) )
7872, 77syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ( A  e. 
|^|_ u  e.  t 
( f `  u
)  <->  A. u  e.  t  A  e.  ( f `
 u ) ) )
7976, 78mpbird 223 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A  e.  |^|_ u  e.  t  ( f `
 u ) )
80 fniinfv 5619 . . . . . . . . . 10  |-  ( f  Fn  t  ->  |^|_ u  e.  t  ( f `  u )  =  |^| ran  f )
8156, 80syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  |^|_ u  e.  t  ( f `  u
)  =  |^| ran  f )
8279, 81eleqtrd 2392 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A  e.  |^| ran  f )
83 elin 3392 . . . . . . . 8  |-  ( A  e.  ( Y  i^i  |^|
ran  f )  <->  ( A  e.  Y  /\  A  e. 
|^| ran  f )
)
8472, 82, 83sylanbrc 645 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A  e.  ( Y  i^i  |^| ran  f ) )
85 simprl 732 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  X  =  U. t )
86 uniiun 3992 . . . . . . . . . . 11  |-  U. t  =  U_ u  e.  t  u
8785, 86syl6eq 2364 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  X  =  U_ u  e.  t  u
)
8887xpeq1d 4749 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ( X  X.  ( Y  i^i  |^| ran  f ) )  =  ( U_ u  e.  t  u  X.  ( Y  i^i  |^| ran  f ) ) )
89 xpiundir 4781 . . . . . . . . 9  |-  ( U_ u  e.  t  u  X.  ( Y  i^i  |^| ran  f ) )  = 
U_ u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) )
9088, 89syl6eq 2364 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ( X  X.  ( Y  i^i  |^| ran  f ) )  = 
U_ u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) ) )
91 simpr 447 . . . . . . . . . . . 12  |-  ( ( A  e.  ( f `
 u )  /\  ( u  X.  (
f `  u )
)  C_  U )  ->  ( u  X.  (
f `  u )
)  C_  U )
9291ralimi 2652 . . . . . . . . . . 11  |-  ( A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U )  ->  A. u  e.  t 
( u  X.  (
f `  u )
)  C_  U )
9373, 92syl 15 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A. u  e.  t  ( u  X.  (
f `  u )
)  C_  U )
94 inss2 3424 . . . . . . . . . . . . 13  |-  ( Y  i^i  |^| ran  f ) 
C_  |^| ran  f
9580adantr 451 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  t  /\  u  e.  t )  -> 
|^|_ u  e.  t 
( f `  u
)  =  |^| ran  f )
96 iinss2 3991 . . . . . . . . . . . . . . 15  |-  ( u  e.  t  ->  |^|_ u  e.  t  ( f `  u )  C_  (
f `  u )
)
9796adantl 452 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  t  /\  u  e.  t )  -> 
|^|_ u  e.  t 
( f `  u
)  C_  ( f `  u ) )
9895, 97eqsstr3d 3247 . . . . . . . . . . . . 13  |-  ( ( f  Fn  t  /\  u  e.  t )  ->  |^| ran  f  C_  ( f `  u
) )
9994, 98syl5ss 3224 . . . . . . . . . . . 12  |-  ( ( f  Fn  t  /\  u  e.  t )  ->  ( Y  i^i  |^| ran  f )  C_  (
f `  u )
)
100 xpss2 4833 . . . . . . . . . . . 12  |-  ( ( Y  i^i  |^| ran  f )  C_  (
f `  u )  ->  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  ( u  X.  ( f `  u
) ) )
101 sstr2 3220 . . . . . . . . . . . 12  |-  ( ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  ( u  X.  ( f `  u
) )  ->  (
( u  X.  (
f `  u )
)  C_  U  ->  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
)
10299, 100, 1013syl 18 . . . . . . . . . . 11  |-  ( ( f  Fn  t  /\  u  e.  t )  ->  ( ( u  X.  ( f `  u
) )  C_  U  ->  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
)
103102ralimdva 2655 . . . . . . . . . 10  |-  ( f  Fn  t  ->  ( A. u  e.  t 
( u  X.  (
f `  u )
)  C_  U  ->  A. u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
)
10456, 93, 103sylc 56 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A. u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
105 iunss 3980 . . . . . . . . 9  |-  ( U_ u  e.  t  (
u  X.  ( Y  i^i  |^| ran  f ) )  C_  U  <->  A. u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
106104, 105sylibr 203 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  U_ u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
10790, 106eqsstrd 3246 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ( X  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
108 eleq2 2377 . . . . . . . . 9  |-  ( u  =  ( Y  i^i  |^|
ran  f )  -> 
( A  e.  u  <->  A  e.  ( Y  i^i  |^|
ran  f ) ) )
109 xpeq2 4741 . . . . . . . . . 10  |-  ( u  =  ( Y  i^i  |^|
ran  f )  -> 
( X  X.  u
)  =  ( X  X.  ( Y  i^i  |^|
ran  f ) ) )
110109sseq1d 3239 . . . . . . . . 9  |-  ( u  =  ( Y  i^i  |^|
ran  f )  -> 
( ( X  X.  u )  C_  U  <->  ( X  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
)
111108, 110anbi12d 691 . . . . . . . 8  |-  ( u  =  ( Y  i^i  |^|
ran  f )  -> 
( ( A  e.  u  /\  ( X  X.  u )  C_  U )  <->  ( A  e.  ( Y  i^i  |^| ran  f )  /\  ( X  X.  ( Y  i^i  |^|
ran  f ) ) 
C_  U ) ) )
112111rspcev 2918 . . . . . . 7  |-  ( ( ( Y  i^i  |^| ran  f )  e.  S  /\  ( A  e.  ( Y  i^i  |^| ran  f )  /\  ( X  X.  ( Y  i^i  |^|
ran  f ) ) 
C_  U ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
)
11371, 84, 107, 112syl12anc 1180 . . . . . 6  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
)
114113expr 598 . . . . 5  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  X  =  U. t )  -> 
( ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
) )
115114exlimdv 1627 . . . 4  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  X  =  U. t )  -> 
( E. f ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u )  C_  U ) ) )
116115expimpd 586 . . 3  |-  ( (
ph  /\  t  e.  ( ~P R  i^i  Fin ) )  ->  (
( X  =  U. t  /\  E. f ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
) )
117116rexlimdva 2701 . 2  |-  ( ph  ->  ( E. t  e.  ( ~P R  i^i  Fin ) ( X  = 
U. t  /\  E. f ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U ) ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u )  C_  U ) ) )
11838, 117mpd 14 1  |-  ( ph  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1532    = wceq 1633    e. wcel 1701    =/= wne 2479   A.wral 2577   E.wrex 2578    i^i cin 3185    C_ wss 3186   (/)c0 3489   ~Pcpw 3659   {csn 3674   <.cop 3677   U.cuni 3864   |^|cint 3899   U_ciun 3942   |^|_ciin 3943    X. cxp 4724   ran crn 4727    Fn wfn 5287   -->wf 5288   -onto->wfo 5290   ` cfv 5292  (class class class)co 5900   Fincfn 6906   Topctop 16687   Compccmp 17169    tX ctx 17311
This theorem is referenced by:  txcmplem1  17391  xkoinjcn  17437  cvmlift2lem12  24129
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-iin 3945  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-1st 6164  df-2nd 6165  df-recs 6430  df-rdg 6465  df-1o 6521  df-oadd 6525  df-er 6702  df-en 6907  df-dom 6908  df-fin 6910  df-topgen 13393  df-top 16692  df-cmp 17170  df-tx 17313
  Copyright terms: Public domain W3C validator