Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz6.12 Structured version   Unicode version

Theorem tz6.12 5751
 Description: Function value. Theorem 6.12(1) of [TakeutiZaring] p. 27. (Contributed by NM, 10-Jul-1994.)
Assertion
Ref Expression
tz6.12
Distinct variable groups:   ,   ,

Proof of Theorem tz6.12
StepHypRef Expression
1 df-br 4216 . 2
21eubii 2292 . 2
3 tz6.12-1 5750 . 2
41, 2, 3syl2anbr 468 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360   wceq 1653   wcel 1726  weu 2283  cop 3819   class class class wbr 4215  cfv 5457 This theorem is referenced by:  tz6.12f  5752  dfac5lem5  8013  tz6.12-afv  28027 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-rex 2713  df-v 2960  df-sbc 3164  df-un 3327  df-sn 3822  df-pr 3823  df-uni 4018  df-br 4216  df-iota 5421  df-fv 5465
 Copyright terms: Public domain W3C validator