Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.26 Unicode version

Theorem tz6.26 23609
Description: All nonempty (possibly proper) subclasses of  A, which has a well-founded relation  R, have  R-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 29-Jan-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
tz6.26  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) )
Distinct variable groups:    y, A    y, B    y, R

Proof of Theorem tz6.26
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 wereu2 4389 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E! y  e.  B  A. x  e.  B  -.  x R y )
2 reurex 2755 . . 3  |-  ( E! y  e.  B  A. x  e.  B  -.  x R y  ->  E. y  e.  B  A. x  e.  B  -.  x R y )
31, 2syl 15 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. y  e.  B  A. x  e.  B  -.  x R y )
4 rabeq0 3477 . . . 4  |-  ( { x  e.  B  |  x R y }  =  (/)  <->  A. x  e.  B  -.  x R y )
5 dfrab3 3445 . . . . . 6  |-  { x  e.  B  |  x R y }  =  ( B  i^i  { x  |  x R y } )
6 vex 2792 . . . . . . 7  |-  y  e. 
_V
76dfpred2 23579 . . . . . 6  |-  Pred ( R ,  B , 
y )  =  ( B  i^i  { x  |  x R y } )
85, 7eqtr4i 2307 . . . . 5  |-  { x  e.  B  |  x R y }  =  Pred ( R ,  B ,  y )
98eqeq1i 2291 . . . 4  |-  ( { x  e.  B  |  x R y }  =  (/)  <->  Pred ( R ,  B ,  y )  =  (/) )
104, 9bitr3i 242 . . 3  |-  ( A. x  e.  B  -.  x R y  <->  Pred ( R ,  B ,  y )  =  (/) )
1110rexbii 2569 . 2  |-  ( E. y  e.  B  A. x  e.  B  -.  x R y  <->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) )
123, 11sylib 188 1  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358    = wceq 1623   {cab 2270    =/= wne 2447   A.wral 2544   E.wrex 2545   E!wreu 2546   {crab 2548    i^i cin 3152    C_ wss 3153   (/)c0 3456   class class class wbr 4024   Se wse 4349    We wwe 4350   Predcpred 23571
This theorem is referenced by:  tz6.26i  23610  wfi  23611
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-br 4025  df-opab 4079  df-po 4313  df-so 4314  df-fr 4351  df-se 4352  df-we 4353  df-xp 4694  df-cnv 4696  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-pred 23572
  Copyright terms: Public domain W3C validator