Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.26i Unicode version

Theorem tz6.26i 23540
Description: All nonempty (possibly proper) subclasses of  A, which has a well-founded relation  R, have  R-minimal elements. Proposition 6.26 of [TakeutiZaring] p. 31. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Hypotheses
Ref Expression
tz6.26i.1  |-  R  We  A
tz6.26i.2  |-  R Se  A
Assertion
Ref Expression
tz6.26i  |-  ( ( B  C_  A  /\  B  =/=  (/) )  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) )
Distinct variable groups:    y, A    y, B    y, R

Proof of Theorem tz6.26i
StepHypRef Expression
1 tz6.26i.1 . 2  |-  R  We  A
2 tz6.26i.2 . 2  |-  R Se  A
3 tz6.26 23539 . 2  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) )
41, 2, 3mpanl12 666 1  |-  ( ( B  C_  A  /\  B  =/=  (/) )  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    =/= wne 2419   E.wrex 2517    C_ wss 3094   (/)c0 3397   Se wse 4287    We wwe 4288   Predcpred 23501
This theorem is referenced by:  wfrlem16  23605
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pr 4152
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-sn 3587  df-pr 3588  df-op 3590  df-br 3964  df-opab 4018  df-po 4251  df-so 4252  df-fr 4289  df-se 4290  df-we 4291  df-xp 4640  df-cnv 4642  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-pred 23502
  Copyright terms: Public domain W3C validator