MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.44-1 Unicode version

Theorem tz7.44-1 6435
Description: The value of  F at  (/). Part 1 of Theorem 7.44 of [TakeutiZaring] p. 49. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.)
Hypotheses
Ref Expression
tz7.44.1  |-  G  =  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) ) ) )
tz7.44.2  |-  ( y  e.  X  ->  ( F `  y )  =  ( G `  ( F  |`  y ) ) )
tz7.44-1.3  |-  A  e. 
_V
Assertion
Ref Expression
tz7.44-1  |-  ( (/)  e.  X  ->  ( F `
 (/) )  =  A )
Distinct variable groups:    x, A    x, y, F    y, G    x, H    y, X
Allowed substitution hints:    A( y)    G( x)    H( y)    X( x)

Proof of Theorem tz7.44-1
StepHypRef Expression
1 fveq2 5541 . . . 4  |-  ( y  =  (/)  ->  ( F `
 y )  =  ( F `  (/) ) )
2 reseq2 4966 . . . . . 6  |-  ( y  =  (/)  ->  ( F  |`  y )  =  ( F  |`  (/) ) )
3 res0 4975 . . . . . 6  |-  ( F  |`  (/) )  =  (/)
42, 3syl6eq 2344 . . . . 5  |-  ( y  =  (/)  ->  ( F  |`  y )  =  (/) )
54fveq2d 5545 . . . 4  |-  ( y  =  (/)  ->  ( G `
 ( F  |`  y ) )  =  ( G `  (/) ) )
61, 5eqeq12d 2310 . . 3  |-  ( y  =  (/)  ->  ( ( F `  y )  =  ( G `  ( F  |`  y ) )  <->  ( F `  (/) )  =  ( G `
 (/) ) ) )
7 tz7.44.2 . . 3  |-  ( y  e.  X  ->  ( F `  y )  =  ( G `  ( F  |`  y ) ) )
86, 7vtoclga 2862 . 2  |-  ( (/)  e.  X  ->  ( F `
 (/) )  =  ( G `  (/) ) )
9 0ex 4166 . . 3  |-  (/)  e.  _V
10 iftrue 3584 . . . 4  |-  ( x  =  (/)  ->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `  U. dom  x ) ) ) )  =  A )
11 tz7.44.1 . . . 4  |-  G  =  ( x  e.  _V  |->  if ( x  =  (/) ,  A ,  if ( Lim  dom  x ,  U. ran  x ,  ( H `  ( x `
 U. dom  x
) ) ) ) )
12 tz7.44-1.3 . . . 4  |-  A  e. 
_V
1310, 11, 12fvmpt 5618 . . 3  |-  ( (/)  e.  _V  ->  ( G `  (/) )  =  A )
149, 13ax-mp 8 . 2  |-  ( G `
 (/) )  =  A
158, 14syl6eq 2344 1  |-  ( (/)  e.  X  ->  ( F `
 (/) )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1632    e. wcel 1696   _Vcvv 2801   (/)c0 3468   ifcif 3578   U.cuni 3843    e. cmpt 4093   Lim wlim 4409   dom cdm 4705   ran crn 4706    |` cres 4707   ` cfv 5271
This theorem is referenced by:  rdg0  6450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-res 4717  df-iota 5235  df-fun 5273  df-fv 5279
  Copyright terms: Public domain W3C validator