MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49c Unicode version

Theorem tz7.49c 6694
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.)
Hypothesis
Ref Expression
tz7.49c.1  |-  F  Fn  On
Assertion
Ref Expression
tz7.49c  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem tz7.49c
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 tz7.49c.1 . . 3  |-  F  Fn  On
2 biid 228 . . 3  |-  ( A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) )  <->  A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
31, 2tz7.49 6693 . 2  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
4 3simpc 956 . . . 4  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  ( ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
5 onss 4762 . . . . . . . . 9  |-  ( x  e.  On  ->  x  C_  On )
6 fnssres 5549 . . . . . . . . 9  |-  ( ( F  Fn  On  /\  x  C_  On )  -> 
( F  |`  x
)  Fn  x )
71, 5, 6sylancr 645 . . . . . . . 8  |-  ( x  e.  On  ->  ( F  |`  x )  Fn  x )
8 df-ima 4882 . . . . . . . . . 10  |-  ( F
" x )  =  ran  ( F  |`  x )
98eqeq1i 2442 . . . . . . . . 9  |-  ( ( F " x )  =  A  <->  ran  ( F  |`  x )  =  A )
109biimpi 187 . . . . . . . 8  |-  ( ( F " x )  =  A  ->  ran  ( F  |`  x )  =  A )
117, 10anim12i 550 . . . . . . 7  |-  ( ( x  e.  On  /\  ( F " x )  =  A )  -> 
( ( F  |`  x )  Fn  x  /\  ran  ( F  |`  x )  =  A ) )
1211anim1i 552 . . . . . 6  |-  ( ( ( x  e.  On  /\  ( F " x
)  =  A )  /\  Fun  `' ( F  |`  x )
)  ->  ( (
( F  |`  x
)  Fn  x  /\  ran  ( F  |`  x
)  =  A )  /\  Fun  `' ( F  |`  x )
) )
13 dff1o2 5670 . . . . . . 7  |-  ( ( F  |`  x ) : x -1-1-onto-> A  <->  ( ( F  |`  x )  Fn  x  /\  Fun  `' ( F  |`  x )  /\  ran  ( F  |`  x )  =  A ) )
14 3anan32 948 . . . . . . 7  |-  ( ( ( F  |`  x
)  Fn  x  /\  Fun  `' ( F  |`  x )  /\  ran  ( F  |`  x )  =  A )  <->  ( (
( F  |`  x
)  Fn  x  /\  ran  ( F  |`  x
)  =  A )  /\  Fun  `' ( F  |`  x )
) )
1513, 14bitri 241 . . . . . 6  |-  ( ( F  |`  x ) : x -1-1-onto-> A  <->  ( ( ( F  |`  x )  Fn  x  /\  ran  ( F  |`  x )  =  A )  /\  Fun  `' ( F  |`  x
) ) )
1612, 15sylibr 204 . . . . 5  |-  ( ( ( x  e.  On  /\  ( F " x
)  =  A )  /\  Fun  `' ( F  |`  x )
)  ->  ( F  |`  x ) : x -1-1-onto-> A )
1716expl 602 . . . 4  |-  ( x  e.  On  ->  (
( ( F "
x )  =  A  /\  Fun  `' ( F  |`  x )
)  ->  ( F  |`  x ) : x -1-1-onto-> A ) )
184, 17syl5 30 . . 3  |-  ( x  e.  On  ->  (
( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  ( F  |`  x ) : x -1-1-onto-> A ) )
1918reximia 2803 . 2  |-  ( E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
203, 19syl 16 1  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    \ cdif 3309    C_ wss 3312   (/)c0 3620   Oncon0 4573   `'ccnv 4868   ran crn 4870    |` cres 4871   "cima 4872   Fun wfun 5439    Fn wfn 5440   -1-1-onto->wf1o 5444   ` cfv 5445
This theorem is referenced by:  dfac8alem  7899  dnnumch1  27056
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395  ax-un 4692
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453
  Copyright terms: Public domain W3C validator