MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49c Unicode version

Theorem tz7.49c 6453
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.)
Hypothesis
Ref Expression
tz7.49c.1  |-  F  Fn  On
Assertion
Ref Expression
tz7.49c  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
Distinct variable groups:    x, A    x, F
Dummy variable  y is distinct from all other variables.
Allowed substitution hint:    B( x)

Proof of Theorem tz7.49c
StepHypRef Expression
1 tz7.49c.1 . . 3  |-  F  Fn  On
2 biid 229 . . 3  |-  ( A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) )  <->  A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
31, 2tz7.49 6452 . 2  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
4 3simpc 956 . . . 4  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  ( ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
5 onss 4581 . . . . . . . . 9  |-  ( x  e.  On  ->  x  C_  On )
6 fnssres 5322 . . . . . . . . 9  |-  ( ( F  Fn  On  /\  x  C_  On )  -> 
( F  |`  x
)  Fn  x )
71, 5, 6sylancr 646 . . . . . . . 8  |-  ( x  e.  On  ->  ( F  |`  x )  Fn  x )
8 df-ima 4701 . . . . . . . . . 10  |-  ( F
" x )  =  ran  (  F  |`  x )
98eqeq1i 2291 . . . . . . . . 9  |-  ( ( F " x )  =  A  <->  ran  (  F  |`  x )  =  A )
109biimpi 188 . . . . . . . 8  |-  ( ( F " x )  =  A  ->  ran  (  F  |`  x )  =  A )
117, 10anim12i 551 . . . . . . 7  |-  ( ( x  e.  On  /\  ( F " x )  =  A )  -> 
( ( F  |`  x )  Fn  x  /\  ran  (  F  |`  x )  =  A ) )
1211anim1i 553 . . . . . 6  |-  ( ( ( x  e.  On  /\  ( F " x
)  =  A )  /\  Fun  `' ( F  |`  x )
)  ->  ( (
( F  |`  x
)  Fn  x  /\  ran  (  F  |`  x
)  =  A )  /\  Fun  `' ( F  |`  x )
) )
13 dff1o2 5442 . . . . . . 7  |-  ( ( F  |`  x ) : x -1-1-onto-> A  <->  ( ( F  |`  x )  Fn  x  /\  Fun  `' ( F  |`  x )  /\  ran  (  F  |`  x )  =  A ) )
14 3anan32 948 . . . . . . 7  |-  ( ( ( F  |`  x
)  Fn  x  /\  Fun  `' ( F  |`  x )  /\  ran  (  F  |`  x )  =  A )  <->  ( (
( F  |`  x
)  Fn  x  /\  ran  (  F  |`  x
)  =  A )  /\  Fun  `' ( F  |`  x )
) )
1513, 14bitri 242 . . . . . 6  |-  ( ( F  |`  x ) : x -1-1-onto-> A  <->  ( ( ( F  |`  x )  Fn  x  /\  ran  (  F  |`  x )  =  A )  /\  Fun  `' ( F  |`  x
) ) )
1612, 15sylibr 205 . . . . 5  |-  ( ( ( x  e.  On  /\  ( F " x
)  =  A )  /\  Fun  `' ( F  |`  x )
)  ->  ( F  |`  x ) : x -1-1-onto-> A )
1716expl 603 . . . 4  |-  ( x  e.  On  ->  (
( ( F "
x )  =  A  /\  Fun  `' ( F  |`  x )
)  ->  ( F  |`  x ) : x -1-1-onto-> A ) )
184, 17syl5 30 . . 3  |-  ( x  e.  On  ->  (
( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  ( F  |`  x ) : x -1-1-onto-> A ) )
1918reximia 2649 . 2  |-  ( E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
203, 19syl 17 1  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 936    = wceq 1624    e. wcel 1685    =/= wne 2447   A.wral 2544   E.wrex 2545    \ cdif 3150    C_ wss 3153   (/)c0 3456   Oncon0 4391   `'ccnv 4687   ran crn 4689    |` cres 4690   "cima 4691   Fun wfun 5215    Fn wfn 5216   -1-1-onto->wf1o 5220   ` cfv 5221
This theorem is referenced by:  dfac8alem  7651  dnnumch1  26540
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1867  ax-ext 2265  ax-rep 4132  ax-sep 4142  ax-nul 4150  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-reu 2551  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229
  Copyright terms: Public domain W3C validator