MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.49c Unicode version

Theorem tz7.49c 6474
Description: Corollary of Proposition 7.49 of [TakeutiZaring] p. 51. (Contributed by NM, 10-Feb-1997.) (Revised by Mario Carneiro, 19-Jan-2013.)
Hypothesis
Ref Expression
tz7.49c.1  |-  F  Fn  On
Assertion
Ref Expression
tz7.49c  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
Distinct variable groups:    x, A    x, F
Allowed substitution hint:    B( x)

Proof of Theorem tz7.49c
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 tz7.49c.1 . . 3  |-  F  Fn  On
2 biid 227 . . 3  |-  ( A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) )  <->  A. x  e.  On  ( ( A  \ 
( F " x
) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F " x ) ) ) )
31, 2tz7.49 6473 . 2  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
4 3simpc 954 . . . 4  |-  ( ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  ( ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) ) )
5 onss 4598 . . . . . . . . 9  |-  ( x  e.  On  ->  x  C_  On )
6 fnssres 5373 . . . . . . . . 9  |-  ( ( F  Fn  On  /\  x  C_  On )  -> 
( F  |`  x
)  Fn  x )
71, 5, 6sylancr 644 . . . . . . . 8  |-  ( x  e.  On  ->  ( F  |`  x )  Fn  x )
8 df-ima 4718 . . . . . . . . . 10  |-  ( F
" x )  =  ran  ( F  |`  x )
98eqeq1i 2303 . . . . . . . . 9  |-  ( ( F " x )  =  A  <->  ran  ( F  |`  x )  =  A )
109biimpi 186 . . . . . . . 8  |-  ( ( F " x )  =  A  ->  ran  ( F  |`  x )  =  A )
117, 10anim12i 549 . . . . . . 7  |-  ( ( x  e.  On  /\  ( F " x )  =  A )  -> 
( ( F  |`  x )  Fn  x  /\  ran  ( F  |`  x )  =  A ) )
1211anim1i 551 . . . . . 6  |-  ( ( ( x  e.  On  /\  ( F " x
)  =  A )  /\  Fun  `' ( F  |`  x )
)  ->  ( (
( F  |`  x
)  Fn  x  /\  ran  ( F  |`  x
)  =  A )  /\  Fun  `' ( F  |`  x )
) )
13 dff1o2 5493 . . . . . . 7  |-  ( ( F  |`  x ) : x -1-1-onto-> A  <->  ( ( F  |`  x )  Fn  x  /\  Fun  `' ( F  |`  x )  /\  ran  ( F  |`  x )  =  A ) )
14 3anan32 946 . . . . . . 7  |-  ( ( ( F  |`  x
)  Fn  x  /\  Fun  `' ( F  |`  x )  /\  ran  ( F  |`  x )  =  A )  <->  ( (
( F  |`  x
)  Fn  x  /\  ran  ( F  |`  x
)  =  A )  /\  Fun  `' ( F  |`  x )
) )
1513, 14bitri 240 . . . . . 6  |-  ( ( F  |`  x ) : x -1-1-onto-> A  <->  ( ( ( F  |`  x )  Fn  x  /\  ran  ( F  |`  x )  =  A )  /\  Fun  `' ( F  |`  x
) ) )
1612, 15sylibr 203 . . . . 5  |-  ( ( ( x  e.  On  /\  ( F " x
)  =  A )  /\  Fun  `' ( F  |`  x )
)  ->  ( F  |`  x ) : x -1-1-onto-> A )
1716expl 601 . . . 4  |-  ( x  e.  On  ->  (
( ( F "
x )  =  A  /\  Fun  `' ( F  |`  x )
)  ->  ( F  |`  x ) : x -1-1-onto-> A ) )
184, 17syl5 28 . . 3  |-  ( x  e.  On  ->  (
( A. y  e.  x  ( A  \ 
( F " y
) )  =/=  (/)  /\  ( F " x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  ( F  |`  x ) : x -1-1-onto-> A ) )
1918reximia 2661 . 2  |-  ( E. x  e.  On  ( A. y  e.  x  ( A  \  ( F " y ) )  =/=  (/)  /\  ( F
" x )  =  A  /\  Fun  `' ( F  |`  x ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
203, 19syl 15 1  |-  ( ( A  e.  B  /\  A. x  e.  On  (
( A  \  ( F " x ) )  =/=  (/)  ->  ( F `  x )  e.  ( A  \  ( F
" x ) ) ) )  ->  E. x  e.  On  ( F  |`  x ) : x -1-1-onto-> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557    \ cdif 3162    C_ wss 3165   (/)c0 3468   Oncon0 4408   `'ccnv 4704   ran crn 4706    |` cres 4707   "cima 4708   Fun wfun 5265    Fn wfn 5266   -1-1-onto->wf1o 5270   ` cfv 5271
This theorem is referenced by:  dfac8alem  7672  dnnumch1  27244
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279
  Copyright terms: Public domain W3C validator