MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.5 Unicode version

Theorem tz7.5 4412
Description: A subclass (possibly proper) of an ordinal class has a minimal element. Proposition 7.5 of [TakeutiZaring] p. 36. (Contributed by NM, 18-Feb-2004.) (Revised by David Abernethy, 16-Mar-2011.)
Assertion
Ref Expression
tz7.5  |-  ( ( Ord  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem tz7.5
StepHypRef Expression
1 ordwe 4404 . 2  |-  ( Ord 
A  ->  _E  We  A )
2 wefrc 4386 . 2  |-  ( (  _E  We  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
31, 2syl3an1 1220 1  |-  ( ( Ord  A  /\  B  C_  A  /\  B  =/=  (/) )  ->  E. x  e.  B  ( B  i^i  x )  =  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    = wceq 1628    =/= wne 2447   E.wrex 2545    i^i cin 3152    C_ wss 3153   (/)c0 3456    _E cep 4302    We wwe 4350   Ord word 4390
This theorem is referenced by:  tz7.7  4417  onint  4585  tfi  4643  peano5  4678  fin23lem26  7946
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pr 4213
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-sn 3647  df-pr 3648  df-op 3650  df-br 4025  df-opab 4079  df-eprel 4304  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394
  Copyright terms: Public domain W3C validator