MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.7 Unicode version

Theorem tz7.7 4311
Description: Proposition 7.7 of [TakeutiZaring] p. 37. (Contributed by NM, 5-May-1994.)
Assertion
Ref Expression
tz7.7  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  e.  A  <->  ( B  C_  A  /\  B  =/= 
A ) ) )

Proof of Theorem tz7.7
StepHypRef Expression
1 ordtr 4299 . . . 4  |-  ( Ord 
A  ->  Tr  A
)
2 ordfr 4300 . . . 4  |-  ( Ord 
A  ->  _E  Fr  A )
3 tz7.2 4270 . . . . 5  |-  ( ( Tr  A  /\  _E  Fr  A  /\  B  e.  A )  ->  ( B  C_  A  /\  B  =/=  A ) )
433exp 1155 . . . 4  |-  ( Tr  A  ->  (  _E  Fr  A  ->  ( B  e.  A  ->  ( B  C_  A  /\  B  =/=  A ) ) ) )
51, 2, 4sylc 58 . . 3  |-  ( Ord 
A  ->  ( B  e.  A  ->  ( B 
C_  A  /\  B  =/=  A ) ) )
65adantr 453 . 2  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  e.  A  ->  ( B  C_  A  /\  B  =/=  A ) ) )
7 pssdifn0 3422 . . . . . 6  |-  ( ( B  C_  A  /\  B  =/=  A )  -> 
( A  \  B
)  =/=  (/) )
8 difss 3220 . . . . . . . . . . . 12  |-  ( A 
\  B )  C_  A
9 tz7.5 4306 . . . . . . . . . . . 12  |-  ( ( Ord  A  /\  ( A  \  B )  C_  A  /\  ( A  \  B )  =/=  (/) )  ->  E. x  e.  ( A  \  B ) ( ( A  \  B
)  i^i  x )  =  (/) )
108, 9mp3an2 1270 . . . . . . . . . . 11  |-  ( ( Ord  A  /\  ( A  \  B )  =/=  (/) )  ->  E. x  e.  ( A  \  B
) ( ( A 
\  B )  i^i  x )  =  (/) )
11 eldifi 3215 . . . . . . . . . . . . . . . . . . 19  |-  ( x  e.  ( A  \  B )  ->  x  e.  A )
12 trss 4019 . . . . . . . . . . . . . . . . . . 19  |-  ( Tr  A  ->  ( x  e.  A  ->  x  C_  A ) )
13 difin0ss 3426 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  \  B
)  i^i  x )  =  (/)  ->  ( x  C_  A  ->  x  C_  B
) )
1413com12 29 . . . . . . . . . . . . . . . . . . 19  |-  ( x 
C_  A  ->  (
( ( A  \  B )  i^i  x
)  =  (/)  ->  x  C_  B ) )
1511, 12, 14syl56 32 . . . . . . . . . . . . . . . . . 18  |-  ( Tr  A  ->  ( x  e.  ( A  \  B
)  ->  ( (
( A  \  B
)  i^i  x )  =  (/)  ->  x  C_  B
) ) )
161, 15syl 17 . . . . . . . . . . . . . . . . 17  |-  ( Ord 
A  ->  ( x  e.  ( A  \  B
)  ->  ( (
( A  \  B
)  i^i  x )  =  (/)  ->  x  C_  B
) ) )
1716ad2antrr 709 . . . . . . . . . . . . . . . 16  |-  ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  ->  (
x  e.  ( A 
\  B )  -> 
( ( ( A 
\  B )  i^i  x )  =  (/)  ->  x  C_  B )
) )
1817imp32 424 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  ( x  e.  ( A  \  B )  /\  ( ( A  \  B )  i^i  x
)  =  (/) ) )  ->  x  C_  B
)
19 eleq1 2313 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( y  =  x  ->  (
y  e.  B  <->  x  e.  B ) )
2019biimpcd 217 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( y  e.  B  ->  (
y  =  x  ->  x  e.  B )
)
21 eldifn 3216 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  ( A  \  B )  ->  -.  x  e.  B )
2220, 21nsyli 135 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( y  e.  B  ->  (
x  e.  ( A 
\  B )  ->  -.  y  =  x
) )
2322imp 420 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  e.  B  /\  x  e.  ( A  \  B ) )  ->  -.  y  =  x
)
2423adantll 697 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) )  ->  -.  y  =  x )
2524adantl 454 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Ord  A  /\  Tr  B )  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  -.  y  =  x )
26 trel 4017 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( Tr  B  ->  ( (
x  e.  y  /\  y  e.  B )  ->  x  e.  B ) )
2726exp3acom23 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( Tr  B  ->  ( y  e.  B  ->  ( x  e.  y  ->  x  e.  B ) ) )
2827imp 420 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( Tr  B  /\  y  e.  B )  ->  (
x  e.  y  ->  x  e.  B )
)
2928, 21nsyli 135 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( Tr  B  /\  y  e.  B )  ->  (
x  e.  ( A 
\  B )  ->  -.  x  e.  y
) )
3029ex 425 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( Tr  B  ->  ( y  e.  B  ->  ( x  e.  ( A  \  B )  ->  -.  x  e.  y )
) )
3130adantld 455 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Tr  B  ->  ( ( B  C_  A  /\  y  e.  B )  ->  (
x  e.  ( A 
\  B )  ->  -.  x  e.  y
) ) )
3231imp32 424 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Tr  B  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  -.  x  e.  y )
3332adantll 697 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Ord  A  /\  Tr  B )  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  -.  x  e.  y )
34 ordwe 4298 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Ord 
A  ->  _E  We  A )
35 ssel2 3098 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( B  C_  A  /\  y  e.  B )  ->  y  e.  A )
3635, 11anim12i 551 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) )  ->  ( y  e.  A  /\  x  e.  A ) )
37 wecmpep 4278 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (  _E  We  A  /\  ( y  e.  A  /\  x  e.  A
) )  ->  (
y  e.  x  \/  y  =  x  \/  x  e.  y ) )
3834, 36, 37syl2an 465 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( Ord  A  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  (
y  e.  x  \/  y  =  x  \/  x  e.  y ) )
3938adantlr 698 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Ord  A  /\  Tr  B )  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  (
y  e.  x  \/  y  =  x  \/  x  e.  y ) )
4025, 33, 39ecase23d 1290 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Ord  A  /\  Tr  B )  /\  (
( B  C_  A  /\  y  e.  B
)  /\  x  e.  ( A  \  B ) ) )  ->  y  e.  x )
4140exp44 599 . . . . . . . . . . . . . . . . . . 19  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  (
y  e.  B  -> 
( x  e.  ( A  \  B )  ->  y  e.  x
) ) ) )
4241com34 79 . . . . . . . . . . . . . . . . . 18  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  (
x  e.  ( A 
\  B )  -> 
( y  e.  B  ->  y  e.  x ) ) ) )
4342imp31 423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  x  e.  ( A  \  B ) )  -> 
( y  e.  B  ->  y  e.  x ) )
4443ssrdv 3106 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  x  e.  ( A  \  B ) )  ->  B  C_  x )
4544adantrr 700 . . . . . . . . . . . . . . 15  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  ( x  e.  ( A  \  B )  /\  ( ( A  \  B )  i^i  x
)  =  (/) ) )  ->  B  C_  x
)
4618, 45eqssd 3117 . . . . . . . . . . . . . 14  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  ( x  e.  ( A  \  B )  /\  ( ( A  \  B )  i^i  x
)  =  (/) ) )  ->  x  =  B )
4711ad2antrl 711 . . . . . . . . . . . . . 14  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  ( x  e.  ( A  \  B )  /\  ( ( A  \  B )  i^i  x
)  =  (/) ) )  ->  x  e.  A
)
4846, 47eqeltrrd 2328 . . . . . . . . . . . . 13  |-  ( ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  /\  ( x  e.  ( A  \  B )  /\  ( ( A  \  B )  i^i  x
)  =  (/) ) )  ->  B  e.  A
)
4948exp32 591 . . . . . . . . . . . 12  |-  ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  ->  (
x  e.  ( A 
\  B )  -> 
( ( ( A 
\  B )  i^i  x )  =  (/)  ->  B  e.  A ) ) )
5049rexlimdv 2628 . . . . . . . . . . 11  |-  ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  ->  ( E. x  e.  ( A  \  B ) ( ( A  \  B
)  i^i  x )  =  (/)  ->  B  e.  A ) )
5110, 50syl5 30 . . . . . . . . . 10  |-  ( ( ( Ord  A  /\  Tr  B )  /\  B  C_  A )  ->  (
( Ord  A  /\  ( A  \  B )  =/=  (/) )  ->  B  e.  A ) )
5251exp4b 593 . . . . . . . . 9  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  ( Ord  A  ->  ( ( A  \  B )  =/=  (/)  ->  B  e.  A
) ) ) )
5352com23 74 . . . . . . . 8  |-  ( ( Ord  A  /\  Tr  B )  ->  ( Ord  A  ->  ( B  C_  A  ->  ( ( A  \  B )  =/=  (/)  ->  B  e.  A
) ) ) )
5453adantrd 456 . . . . . . 7  |-  ( ( Ord  A  /\  Tr  B )  ->  (
( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  (
( A  \  B
)  =/=  (/)  ->  B  e.  A ) ) ) )
5554pm2.43i 45 . . . . . 6  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  (
( A  \  B
)  =/=  (/)  ->  B  e.  A ) ) )
567, 55syl7 65 . . . . 5  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  (
( B  C_  A  /\  B  =/=  A
)  ->  B  e.  A ) ) )
5756exp4a 592 . . . 4  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  ( B  C_  A  ->  ( B  =/=  A  ->  B  e.  A ) ) ) )
5857pm2.43d 46 . . 3  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  C_  A  ->  ( B  =/=  A  ->  B  e.  A ) ) )
5958imp3a 422 . 2  |-  ( ( Ord  A  /\  Tr  B )  ->  (
( B  C_  A  /\  B  =/=  A
)  ->  B  e.  A ) )
606, 59impbid 185 1  |-  ( ( Ord  A  /\  Tr  B )  ->  ( B  e.  A  <->  ( B  C_  A  /\  B  =/= 
A ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    /\ wa 360    \/ w3o 938    = wceq 1619    e. wcel 1621    =/= wne 2412   E.wrex 2510    \ cdif 3075    i^i cin 3077    C_ wss 3078   (/)c0 3362   Tr wtr 4010    _E cep 4196    Fr wfr 4242    We wwe 4244   Ord word 4284
This theorem is referenced by:  ordelssne  4312  dfon2  23316
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pr 4108
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-rab 2516  df-v 2729  df-sbc 2922  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-br 3921  df-opab 3975  df-tr 4011  df-eprel 4198  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288
  Copyright terms: Public domain W3C validator