MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1 Unicode version

Theorem tz9.1 7344
Description: Every set has a transitive closure (smallest transitive extension). Theorem 9.1 of [TakeutiZaring] p. 73. See trcl 7343 for an explicit expression for the transitive closure. Apparently open problems are whether this theorem can be proved without the Axiom of Infinity; if not, then whether it implies Infinity; and if not, what is the "property" that Infinity has that the other axioms don't have that is weaker than Infinity itself?

(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.)

Hypothesis
Ref Expression
tz9.1.1  |-  A  e. 
_V
Assertion
Ref Expression
tz9.1  |-  E. x
( A  C_  x  /\  Tr  x  /\  A. y ( ( A 
C_  y  /\  Tr  y )  ->  x  C_  y ) )
Distinct variable group:    x, A, y

Proof of Theorem tz9.1
StepHypRef Expression
1 tz9.1.1 . . 3  |-  A  e. 
_V
2 eqid 2256 . . 3  |-  ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om )  =  ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om )
3 eqid 2256 . . 3  |-  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )
41, 2, 3trcl 7343 . 2  |-  ( A 
C_  U_ z  e.  om  ( ( rec (
( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z )  /\  Tr  U_ z  e.  om  (
( rec ( ( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z )  /\  A. y ( ( A 
C_  y  /\  Tr  y )  ->  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z ) 
C_  y ) )
5 omex 7277 . . . 4  |-  om  e.  _V
6 fvex 5437 . . . 4  |-  ( ( rec ( ( w  e.  _V  |->  ( w  u.  U. w ) ) ,  A )  |`  om ) `  z
)  e.  _V
75, 6iunex 5669 . . 3  |-  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  e.  _V
8 sseq2 3142 . . . 4  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( A  C_  x 
<->  A  C_  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z ) ) )
9 treq 4059 . . . 4  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( Tr  x  <->  Tr 
U_ z  e.  om  ( ( rec (
( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z ) ) )
10 sseq1 3141 . . . . . 6  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( x  C_  y 
<-> 
U_ z  e.  om  ( ( rec (
( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z )  C_  y
) )
1110imbi2d 309 . . . . 5  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( ( ( A  C_  y  /\  Tr  y )  ->  x  C_  y )  <->  ( ( A  C_  y  /\  Tr  y )  ->  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z ) 
C_  y ) ) )
1211albidv 2005 . . . 4  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( A. y
( ( A  C_  y  /\  Tr  y )  ->  x  C_  y
)  <->  A. y ( ( A  C_  y  /\  Tr  y )  ->  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z ) 
C_  y ) ) )
138, 9, 123anbi123d 1257 . . 3  |-  ( x  =  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  ->  ( ( A 
C_  x  /\  Tr  x  /\  A. y ( ( A  C_  y  /\  Tr  y )  ->  x  C_  y ) )  <-> 
( A  C_  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  /\  Tr  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  /\  A. y ( ( A  C_  y  /\  Tr  y )  ->  U_ z  e.  om  ( ( rec (
( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z )  C_  y
) ) ) )
147, 13cla4ev 2826 . 2  |-  ( ( A  C_  U_ z  e. 
om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  /\  Tr  U_ z  e.  om  ( ( rec ( ( w  e. 
_V  |->  ( w  u. 
U. w ) ) ,  A )  |`  om ) `  z )  /\  A. y ( ( A  C_  y  /\  Tr  y )  ->  U_ z  e.  om  ( ( rec (
( w  e.  _V  |->  ( w  u.  U. w
) ) ,  A
)  |`  om ) `  z )  C_  y
) )  ->  E. x
( A  C_  x  /\  Tr  x  /\  A. y ( ( A 
C_  y  /\  Tr  y )  ->  x  C_  y ) ) )
154, 14ax-mp 10 1  |-  E. x
( A  C_  x  /\  Tr  x  /\  A. y ( ( A 
C_  y  /\  Tr  y )  ->  x  C_  y ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    /\ w3a 939   A.wal 1532   E.wex 1537    = wceq 1619    e. wcel 1621   _Vcvv 2740    u. cun 3092    C_ wss 3094   U.cuni 3768   U_ciun 3846    e. cmpt 4017   Tr wtr 4053   omcom 4593    |` cres 4628   ` cfv 4638   reccrdg 6355
This theorem is referenced by:  epfrs  7346
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pr 4152  ax-un 4449  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-recs 6321  df-rdg 6356
  Copyright terms: Public domain W3C validator