MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ubthlem1 Unicode version

Theorem ubthlem1 21409
Description: Lemma for ubth 21412. The function  A exhibits a countable collection of sets that are closed, being the inverse image under  t of the closed ball of radius  k, and by assumption they cover  X. Thus by the Baire Category theorem bcth2 18714, for some  n the set  A `  n has an interior, meaning that there is a closed ball  { z  e.  X  |  ( y D z )  <_  r } in the set. (Contributed by Mario Carneiro, 11-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ubth.1  |-  X  =  ( BaseSet `  U )
ubth.2  |-  N  =  ( normCV `  W )
ubthlem.3  |-  D  =  ( IndMet `  U )
ubthlem.4  |-  J  =  ( MetOpen `  D )
ubthlem.5  |-  U  e. 
CBan
ubthlem.6  |-  W  e.  NrmCVec
ubthlem.7  |-  ( ph  ->  T  C_  ( U  BLnOp  W ) )
ubthlem.8  |-  ( ph  ->  A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `
 x ) )  <_  c )
ubthlem.9  |-  A  =  ( k  e.  NN  |->  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
Assertion
Ref Expression
ubthlem1  |-  ( ph  ->  E. n  e.  NN  E. y  e.  X  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) )
Distinct variable groups:    k, c, n, r, x, y, z, A    t, c, D, k, n, r, x, z    k, J, n   
y, t, J, x    N, c, k, n, r, t, x, y, z    ph, c, k, n, r, t, x, y    T, c, k, n, r, t, x, y, z    U, c, n, r, t, x, y, z    W, c, n, r, t, x, y    X, c, k, n, r, t, x, y, z
Allowed substitution hints:    ph( z)    A( t)    D( y)    U( k)    J( z, r, c)    W( z, k)

Proof of Theorem ubthlem1
StepHypRef Expression
1 rzal 3530 . . . . . . . . 9  |-  ( T  =  (/)  ->  A. t  e.  T  ( N `  ( t `  z
) )  <_  k
)
21ralrimivw 2602 . . . . . . . 8  |-  ( T  =  (/)  ->  A. z  e.  X  A. t  e.  T  ( N `  ( t `  z
) )  <_  k
)
3 rabid2 2692 . . . . . . . 8  |-  ( X  =  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z
) )  <_  k } 
<-> 
A. z  e.  X  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k )
42, 3sylibr 205 . . . . . . 7  |-  ( T  =  (/)  ->  X  =  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
54eqcomd 2263 . . . . . 6  |-  ( T  =  (/)  ->  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z ) )  <_ 
k }  =  X )
65eleq1d 2324 . . . . 5  |-  ( T  =  (/)  ->  ( { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k }  e.  ( Clsd `  J )  <->  X  e.  ( Clsd `  J
) ) )
7 iinrab 3938 . . . . . . 7  |-  ( T  =/=  (/)  ->  |^|_ t  e.  T  { z  e.  X  |  ( N `
 ( t `  z ) )  <_ 
k }  =  {
z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
87adantl 454 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  T  =/=  (/) )  ->  |^|_ t  e.  T  { z  e.  X  |  ( N `  ( t `  z ) )  <_ 
k }  =  {
z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
9 id 21 . . . . . . 7  |-  ( T  =/=  (/)  ->  T  =/=  (/) )
10 ubthlem.7 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  T  C_  ( U  BLnOp  W ) )
1110sselda 3155 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  t  e.  T )  ->  t  e.  ( U  BLnOp  W ) )
12 ubthlem.3 . . . . . . . . . . . . . . . . . . . 20  |-  D  =  ( IndMet `  U )
13 eqid 2258 . . . . . . . . . . . . . . . . . . . 20  |-  ( IndMet `  W )  =  (
IndMet `  W )
14 ubthlem.4 . . . . . . . . . . . . . . . . . . . 20  |-  J  =  ( MetOpen `  D )
15 eqid 2258 . . . . . . . . . . . . . . . . . . . 20  |-  ( MetOpen `  ( IndMet `  W )
)  =  ( MetOpen `  ( IndMet `  W )
)
16 eqid 2258 . . . . . . . . . . . . . . . . . . . 20  |-  ( U 
BLnOp  W )  =  ( U  BLnOp  W )
17 ubthlem.5 . . . . . . . . . . . . . . . . . . . . 21  |-  U  e. 
CBan
18 bnnv 21405 . . . . . . . . . . . . . . . . . . . . 21  |-  ( U  e.  CBan  ->  U  e.  NrmCVec )
1917, 18ax-mp 10 . . . . . . . . . . . . . . . . . . . 20  |-  U  e.  NrmCVec
20 ubthlem.6 . . . . . . . . . . . . . . . . . . . 20  |-  W  e.  NrmCVec
2112, 13, 14, 15, 16, 19, 20blocn2 21346 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  ( U  BLnOp  W )  ->  t  e.  ( J  Cn  ( MetOpen
`  ( IndMet `  W
) ) ) )
22 ubth.1 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  X  =  ( BaseSet `  U )
2322, 12cbncms 21404 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( U  e.  CBan  ->  D  e.  ( CMet `  X
) )
2417, 23ax-mp 10 . . . . . . . . . . . . . . . . . . . . . 22  |-  D  e.  ( CMet `  X
)
25 cmetmet 18674 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
26 metxmet 17861 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
2724, 25, 26mp2b 11 . . . . . . . . . . . . . . . . . . . . 21  |-  D  e.  ( * Met `  X
)
2814mopntopon 17947 . . . . . . . . . . . . . . . . . . . . 21  |-  ( D  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
2927, 28ax-mp 10 . . . . . . . . . . . . . . . . . . . 20  |-  J  e.  (TopOn `  X )
30 eqid 2258 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( BaseSet `  W )  =  (
BaseSet `  W )
3130, 13imsxmet 21221 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( W  e.  NrmCVec  ->  ( IndMet `  W
)  e.  ( * Met `  ( BaseSet `  W ) ) )
3220, 31ax-mp 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( IndMet `  W )  e.  ( * Met `  ( BaseSet
`  W ) )
3315mopntopon 17947 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
IndMet `  W )  e.  ( * Met `  ( BaseSet
`  W ) )  ->  ( MetOpen `  ( IndMet `
 W ) )  e.  (TopOn `  ( BaseSet
`  W ) ) )
3432, 33ax-mp 10 . . . . . . . . . . . . . . . . . . . 20  |-  ( MetOpen `  ( IndMet `  W )
)  e.  (TopOn `  ( BaseSet `  W )
)
35 iscncl 16960 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( J  e.  (TopOn `  X )  /\  ( MetOpen
`  ( IndMet `  W
) )  e.  (TopOn `  ( BaseSet `  W )
) )  ->  (
t  e.  ( J  Cn  ( MetOpen `  ( IndMet `
 W ) ) )  <->  ( t : X --> ( BaseSet `  W
)  /\  A. x  e.  ( Clsd `  ( MetOpen
`  ( IndMet `  W
) ) ) ( `' t " x
)  e.  ( Clsd `  J ) ) ) )
3629, 34, 35mp2an 656 . . . . . . . . . . . . . . . . . . 19  |-  ( t  e.  ( J  Cn  ( MetOpen `  ( IndMet `  W ) ) )  <-> 
( t : X --> ( BaseSet `  W )  /\  A. x  e.  (
Clsd `  ( MetOpen `  ( IndMet `
 W ) ) ) ( `' t
" x )  e.  ( Clsd `  J
) ) )
3721, 36sylib 190 . . . . . . . . . . . . . . . . . 18  |-  ( t  e.  ( U  BLnOp  W )  ->  ( t : X --> ( BaseSet `  W
)  /\  A. x  e.  ( Clsd `  ( MetOpen
`  ( IndMet `  W
) ) ) ( `' t " x
)  e.  ( Clsd `  J ) ) )
3811, 37syl 17 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  t  e.  T )  ->  (
t : X --> ( BaseSet `  W )  /\  A. x  e.  ( Clsd `  ( MetOpen `  ( IndMet `  W ) ) ) ( `' t "
x )  e.  (
Clsd `  J )
) )
3938simpld 447 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  t  e.  T )  ->  t : X --> ( BaseSet `  W
) )
4039adantlr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  t : X --> ( BaseSet `  W
) )
41 ffvelrn 5597 . . . . . . . . . . . . . . 15  |-  ( ( t : X --> ( BaseSet `  W )  /\  x  e.  X )  ->  (
t `  x )  e.  ( BaseSet `  W )
)
4240, 41sylan 459 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T
)  /\  x  e.  X )  ->  (
t `  x )  e.  ( BaseSet `  W )
)
4342biantrurd 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T
)  /\  x  e.  X )  ->  (
( N `  (
t `  x )
)  <_  k  <->  ( (
t `  x )  e.  ( BaseSet `  W )  /\  ( N `  (
t `  x )
)  <_  k )
) )
44 fveq2 5458 . . . . . . . . . . . . . . 15  |-  ( y  =  ( t `  x )  ->  ( N `  y )  =  ( N `  ( t `  x
) ) )
4544breq1d 4007 . . . . . . . . . . . . . 14  |-  ( y  =  ( t `  x )  ->  (
( N `  y
)  <_  k  <->  ( N `  ( t `  x
) )  <_  k
) )
4645elrab 2898 . . . . . . . . . . . . 13  |-  ( ( t `  x )  e.  { y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } 
<->  ( ( t `  x )  e.  (
BaseSet `  W )  /\  ( N `  ( t `
 x ) )  <_  k ) )
4743, 46syl6bbr 256 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T
)  /\  x  e.  X )  ->  (
( N `  (
t `  x )
)  <_  k  <->  ( t `  x )  e.  {
y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } ) )
4847pm5.32da 625 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  (
( x  e.  X  /\  ( N `  (
t `  x )
)  <_  k )  <->  ( x  e.  X  /\  ( t `  x
)  e.  { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k } ) ) )
49 fveq2 5458 . . . . . . . . . . . . . . 15  |-  ( z  =  x  ->  (
t `  z )  =  ( t `  x ) )
5049fveq2d 5462 . . . . . . . . . . . . . 14  |-  ( z  =  x  ->  ( N `  ( t `  z ) )  =  ( N `  (
t `  x )
) )
5150breq1d 4007 . . . . . . . . . . . . 13  |-  ( z  =  x  ->  (
( N `  (
t `  z )
)  <_  k  <->  ( N `  ( t `  x
) )  <_  k
) )
5251elrab 2898 . . . . . . . . . . . 12  |-  ( x  e.  { z  e.  X  |  ( N `
 ( t `  z ) )  <_ 
k }  <->  ( x  e.  X  /\  ( N `  ( t `  x ) )  <_ 
k ) )
5352a1i 12 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  (
x  e.  { z  e.  X  |  ( N `  ( t `
 z ) )  <_  k }  <->  ( x  e.  X  /\  ( N `  ( t `  x ) )  <_ 
k ) ) )
54 ffn 5327 . . . . . . . . . . . 12  |-  ( t : X --> ( BaseSet `  W )  ->  t  Fn  X )
55 elpreima 5579 . . . . . . . . . . . 12  |-  ( t  Fn  X  ->  (
x  e.  ( `' t " { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k } )  <->  ( x  e.  X  /\  (
t `  x )  e.  { y  e.  (
BaseSet `  W )  |  ( N `  y
)  <_  k }
) ) )
5640, 54, 553syl 20 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  (
x  e.  ( `' t " { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k } )  <->  ( x  e.  X  /\  (
t `  x )  e.  { y  e.  (
BaseSet `  W )  |  ( N `  y
)  <_  k }
) ) )
5748, 53, 563bitr4d 278 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  (
x  e.  { z  e.  X  |  ( N `  ( t `
 z ) )  <_  k }  <->  x  e.  ( `' t " {
y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } ) ) )
5857eqrdv 2256 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  { z  e.  X  |  ( N `  ( t `
 z ) )  <_  k }  =  ( `' t " {
y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } ) )
59 nnre 9721 . . . . . . . . . . . . 13  |-  ( k  e.  NN  ->  k  e.  RR )
6059ad2antlr 710 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  k  e.  RR )
6160rexrd 8849 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  k  e.  RR* )
62 eqid 2258 . . . . . . . . . . . . . 14  |-  ( 0vec `  W )  =  (
0vec `  W )
6330, 62nvzcl 21152 . . . . . . . . . . . . 13  |-  ( W  e.  NrmCVec  ->  ( 0vec `  W
)  e.  ( BaseSet `  W ) )
6420, 63ax-mp 10 . . . . . . . . . . . 12  |-  ( 0vec `  W )  e.  (
BaseSet `  W )
65 ubth.2 . . . . . . . . . . . . . . . . . 18  |-  N  =  ( normCV `  W )
6630, 62, 65, 13nvnd 21217 . . . . . . . . . . . . . . . . 17  |-  ( ( W  e.  NrmCVec  /\  y  e.  ( BaseSet `  W )
)  ->  ( N `  y )  =  ( y ( IndMet `  W
) ( 0vec `  W
) ) )
6720, 66mpan 654 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( BaseSet `  W
)  ->  ( N `  y )  =  ( y ( IndMet `  W
) ( 0vec `  W
) ) )
68 xmetsym 17874 . . . . . . . . . . . . . . . . 17  |-  ( ( ( IndMet `  W )  e.  ( * Met `  ( BaseSet
`  W ) )  /\  ( 0vec `  W
)  e.  ( BaseSet `  W )  /\  y  e.  ( BaseSet `  W )
)  ->  ( ( 0vec `  W ) (
IndMet `  W ) y )  =  ( y ( IndMet `  W )
( 0vec `  W )
) )
6932, 64, 68mp3an12 1272 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( BaseSet `  W
)  ->  ( ( 0vec `  W ) (
IndMet `  W ) y )  =  ( y ( IndMet `  W )
( 0vec `  W )
) )
7067, 69eqtr4d 2293 . . . . . . . . . . . . . . 15  |-  ( y  e.  ( BaseSet `  W
)  ->  ( N `  y )  =  ( ( 0vec `  W
) ( IndMet `  W
) y ) )
7170breq1d 4007 . . . . . . . . . . . . . 14  |-  ( y  e.  ( BaseSet `  W
)  ->  ( ( N `  y )  <_  k  <->  ( ( 0vec `  W ) ( IndMet `  W ) y )  <_  k ) )
7271rabbiia 2753 . . . . . . . . . . . . 13  |-  { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k }  =  {
y  e.  ( BaseSet `  W )  |  ( ( 0vec `  W
) ( IndMet `  W
) y )  <_ 
k }
7315, 72blcld 18013 . . . . . . . . . . . 12  |-  ( ( ( IndMet `  W )  e.  ( * Met `  ( BaseSet
`  W ) )  /\  ( 0vec `  W
)  e.  ( BaseSet `  W )  /\  k  e.  RR* )  ->  { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k }  e.  (
Clsd `  ( MetOpen `  ( IndMet `
 W ) ) ) )
7432, 64, 73mp3an12 1272 . . . . . . . . . . 11  |-  ( k  e.  RR*  ->  { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k }  e.  (
Clsd `  ( MetOpen `  ( IndMet `
 W ) ) ) )
7561, 74syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  { y  e.  ( BaseSet `  W
)  |  ( N `
 y )  <_ 
k }  e.  (
Clsd `  ( MetOpen `  ( IndMet `
 W ) ) ) )
7638simprd 451 . . . . . . . . . . 11  |-  ( (
ph  /\  t  e.  T )  ->  A. x  e.  ( Clsd `  ( MetOpen
`  ( IndMet `  W
) ) ) ( `' t " x
)  e.  ( Clsd `  J ) )
7776adantlr 698 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  A. x  e.  ( Clsd `  ( MetOpen
`  ( IndMet `  W
) ) ) ( `' t " x
)  e.  ( Clsd `  J ) )
78 imaeq2 4996 . . . . . . . . . . . 12  |-  ( x  =  { y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k }  ->  ( `' t
" x )  =  ( `' t " { y  e.  (
BaseSet `  W )  |  ( N `  y
)  <_  k }
) )
7978eleq1d 2324 . . . . . . . . . . 11  |-  ( x  =  { y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k }  ->  ( ( `' t " x )  e.  ( Clsd `  J
)  <->  ( `' t
" { y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } )  e.  (
Clsd `  J )
) )
8079rcla4v 2855 . . . . . . . . . 10  |-  ( { y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k }  e.  ( Clsd `  ( MetOpen `  ( IndMet `
 W ) ) )  ->  ( A. x  e.  ( Clsd `  ( MetOpen `  ( IndMet `  W ) ) ) ( `' t "
x )  e.  (
Clsd `  J )  ->  ( `' t " { y  e.  (
BaseSet `  W )  |  ( N `  y
)  <_  k }
)  e.  ( Clsd `  J ) ) )
8175, 77, 80sylc 58 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  ( `' t " {
y  e.  ( BaseSet `  W )  |  ( N `  y )  <_  k } )  e.  ( Clsd `  J
) )
8258, 81eqeltrd 2332 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  NN )  /\  t  e.  T )  ->  { z  e.  X  |  ( N `  ( t `
 z ) )  <_  k }  e.  ( Clsd `  J )
)
8382ralrimiva 2601 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  A. t  e.  T  { z  e.  X  |  ( N `  ( t `  z ) )  <_ 
k }  e.  (
Clsd `  J )
)
84 iincld 16738 . . . . . . 7  |-  ( ( T  =/=  (/)  /\  A. t  e.  T  {
z  e.  X  | 
( N `  (
t `  z )
)  <_  k }  e.  ( Clsd `  J
) )  ->  |^|_ t  e.  T  { z  e.  X  |  ( N `  ( t `  z ) )  <_ 
k }  e.  (
Clsd `  J )
)
859, 83, 84syl2anr 466 . . . . . 6  |-  ( ( ( ph  /\  k  e.  NN )  /\  T  =/=  (/) )  ->  |^|_ t  e.  T  { z  e.  X  |  ( N `  ( t `  z ) )  <_ 
k }  e.  (
Clsd `  J )
)
868, 85eqeltrrd 2333 . . . . 5  |-  ( ( ( ph  /\  k  e.  NN )  /\  T  =/=  (/) )  ->  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z ) )  <_ 
k }  e.  (
Clsd `  J )
)
8714mopntop 17948 . . . . . . . 8  |-  ( D  e.  ( * Met `  X )  ->  J  e.  Top )
8827, 87ax-mp 10 . . . . . . 7  |-  J  e. 
Top
8929toponunii 16632 . . . . . . . 8  |-  X  = 
U. J
9089topcld 16734 . . . . . . 7  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
9188, 90ax-mp 10 . . . . . 6  |-  X  e.  ( Clsd `  J
)
9291a1i 12 . . . . 5  |-  ( (
ph  /\  k  e.  NN )  ->  X  e.  ( Clsd `  J
) )
936, 86, 92pm2.61ne 2496 . . . 4  |-  ( (
ph  /\  k  e.  NN )  ->  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z ) )  <_ 
k }  e.  (
Clsd `  J )
)
94 ubthlem.9 . . . 4  |-  A  =  ( k  e.  NN  |->  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
9593, 94fmptd 5618 . . 3  |-  ( ph  ->  A : NN --> ( Clsd `  J ) )
96 frn 5333 . . . . . . 7  |-  ( A : NN --> ( Clsd `  J )  ->  ran  A 
C_  ( Clsd `  J
) )
9795, 96syl 17 . . . . . 6  |-  ( ph  ->  ran  A  C_  ( Clsd `  J ) )
9889cldss2 16729 . . . . . 6  |-  ( Clsd `  J )  C_  ~P X
9997, 98syl6ss 3166 . . . . 5  |-  ( ph  ->  ran  A  C_  ~P X )
100 sspwuni 3961 . . . . 5  |-  ( ran 
A  C_  ~P X  <->  U.
ran  A  C_  X )
10199, 100sylib 190 . . . 4  |-  ( ph  ->  U. ran  A  C_  X )
102 ubthlem.8 . . . . . 6  |-  ( ph  ->  A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `
 x ) )  <_  c )
103 arch 9929 . . . . . . . . . 10  |-  ( c  e.  RR  ->  E. k  e.  NN  c  <  k
)
104103adantl 454 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  ->  E. k  e.  NN  c  <  k
)
105 simpr 449 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  ->  c  e.  RR )
106 ltle 8878 . . . . . . . . . . . . . . . . 17  |-  ( ( c  e.  RR  /\  k  e.  RR )  ->  ( c  <  k  ->  c  <_  k )
)
107105, 59, 106syl2an 465 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  k  e.  NN )  ->  ( c  < 
k  ->  c  <_  k ) )
108107impr 605 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  -> 
c  <_  k )
109108adantr 453 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  c  <_  k )
11039, 41sylan 459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  t  e.  T )  /\  x  e.  X )  ->  (
t `  x )  e.  ( BaseSet `  W )
)
111110an32s 782 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  x  e.  X )  /\  t  e.  T )  ->  (
t `  x )  e.  ( BaseSet `  W )
)
11230, 65nvcl 21185 . . . . . . . . . . . . . . . . . 18  |-  ( ( W  e.  NrmCVec  /\  (
t `  x )  e.  ( BaseSet `  W )
)  ->  ( N `  ( t `  x
) )  e.  RR )
11320, 111, 112sylancr 647 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  X )  /\  t  e.  T )  ->  ( N `  ( t `  x ) )  e.  RR )
114113adantlr 698 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  t  e.  T
)  ->  ( N `  ( t `  x
) )  e.  RR )
115114adantlr 698 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  ( N `  (
t `  x )
)  e.  RR )
116 simpllr 738 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  c  e.  RR )
117 simplrl 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  k  e.  NN )
118117, 59syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  k  e.  RR )
119 letr 8882 . . . . . . . . . . . . . . 15  |-  ( ( ( N `  (
t `  x )
)  e.  RR  /\  c  e.  RR  /\  k  e.  RR )  ->  (
( ( N `  ( t `  x
) )  <_  c  /\  c  <_  k )  ->  ( N `  ( t `  x
) )  <_  k
) )
120115, 116, 118, 119syl3anc 1187 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  ( ( ( N `
 ( t `  x ) )  <_ 
c  /\  c  <_  k )  ->  ( N `  ( t `  x
) )  <_  k
) )
121109, 120mpan2d 658 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  /\  t  e.  T )  ->  ( ( N `  ( t `  x
) )  <_  c  ->  ( N `  (
t `  x )
)  <_  k )
)
122121ralimdva 2596 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  ( k  e.  NN  /\  c  < 
k ) )  -> 
( A. t  e.  T  ( N `  ( t `  x
) )  <_  c  ->  A. t  e.  T  ( N `  ( t `
 x ) )  <_  k ) )
123122expr 601 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  k  e.  NN )  ->  ( c  < 
k  ->  ( A. t  e.  T  ( N `  ( t `  x ) )  <_ 
c  ->  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) ) )
124 fvex 5472 . . . . . . . . . . . . . . . . . . 19  |-  ( BaseSet `  U )  e.  _V
12522, 124eqeltri 2328 . . . . . . . . . . . . . . . . . 18  |-  X  e. 
_V
126125rabex 4139 . . . . . . . . . . . . . . . . 17  |-  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z ) )  <_ 
k }  e.  _V
12794fvmpt2 5542 . . . . . . . . . . . . . . . . 17  |-  ( ( k  e.  NN  /\  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k }  e.  _V )  ->  ( A `
 k )  =  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
128126, 127mpan2 655 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  ( A `  k )  =  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } )
129128eleq2d 2325 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
x  e.  ( A `
 k )  <->  x  e.  { z  e.  X  |  A. t  e.  T  ( N `  ( t `
 z ) )  <_  k } ) )
13051ralbidv 2538 . . . . . . . . . . . . . . . 16  |-  ( z  =  x  ->  ( A. t  e.  T  ( N `  ( t `
 z ) )  <_  k  <->  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) )
131130elrab 2898 . . . . . . . . . . . . . . 15  |-  ( x  e.  { z  e.  X  |  A. t  e.  T  ( N `  ( t `  z
) )  <_  k } 
<->  ( x  e.  X  /\  A. t  e.  T  ( N `  ( t `
 x ) )  <_  k ) )
132129, 131syl6bb 254 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
x  e.  ( A `
 k )  <->  ( x  e.  X  /\  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) ) )
133 simpr 449 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  X )  ->  x  e.  X )
134133biantrurd 496 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  X )  ->  ( A. t  e.  T  ( N `  ( t `
 x ) )  <_  k  <->  ( x  e.  X  /\  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) ) )
135134bicomd 194 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  (
( x  e.  X  /\  A. t  e.  T  ( N `  ( t `
 x ) )  <_  k )  <->  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) )
136132, 135sylan9bbr 684 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  NN )  ->  (
x  e.  ( A `
 k )  <->  A. t  e.  T  ( N `  ( t `  x
) )  <_  k
) )
137 ffn 5327 . . . . . . . . . . . . . . . 16  |-  ( A : NN --> ( Clsd `  J )  ->  A  Fn  NN )
13895, 137syl 17 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A  Fn  NN )
139138adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  X )  ->  A  Fn  NN )
140 fnfvelrn 5596 . . . . . . . . . . . . . . . 16  |-  ( ( A  Fn  NN  /\  k  e.  NN )  ->  ( A `  k
)  e.  ran  A
)
141 elssuni 3829 . . . . . . . . . . . . . . . 16  |-  ( ( A `  k )  e.  ran  A  -> 
( A `  k
)  C_  U. ran  A
)
142140, 141syl 17 . . . . . . . . . . . . . . 15  |-  ( ( A  Fn  NN  /\  k  e.  NN )  ->  ( A `  k
)  C_  U. ran  A
)
143142sseld 3154 . . . . . . . . . . . . . 14  |-  ( ( A  Fn  NN  /\  k  e.  NN )  ->  ( x  e.  ( A `  k )  ->  x  e.  U. ran  A ) )
144139, 143sylan 459 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  NN )  ->  (
x  e.  ( A `
 k )  ->  x  e.  U. ran  A
) )
145136, 144sylbird 228 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  NN )  ->  ( A. t  e.  T  ( N `  ( t `
 x ) )  <_  k  ->  x  e.  U. ran  A ) )
146145adantlr 698 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  k  e.  NN )  ->  ( A. t  e.  T  ( N `  ( t `  x
) )  <_  k  ->  x  e.  U. ran  A ) )
147123, 146syl6d 66 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  /\  k  e.  NN )  ->  ( c  < 
k  ->  ( A. t  e.  T  ( N `  ( t `  x ) )  <_ 
c  ->  x  e.  U.
ran  A ) ) )
148147rexlimdva 2642 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  ->  ( E. k  e.  NN  c  <  k  ->  ( A. t  e.  T  ( N `  ( t `
 x ) )  <_  c  ->  x  e.  U. ran  A ) ) )
149104, 148mpd 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  c  e.  RR )  ->  ( A. t  e.  T  ( N `  ( t `
 x ) )  <_  c  ->  x  e.  U. ran  A ) )
150149rexlimdva 2642 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( E. c  e.  RR  A. t  e.  T  ( N `  ( t `
 x ) )  <_  c  ->  x  e.  U. ran  A ) )
151150ralimdva 2596 . . . . . 6  |-  ( ph  ->  ( A. x  e.  X  E. c  e.  RR  A. t  e.  T  ( N `  ( t `  x
) )  <_  c  ->  A. x  e.  X  x  e.  U. ran  A
) )
152102, 151mpd 16 . . . . 5  |-  ( ph  ->  A. x  e.  X  x  e.  U. ran  A
)
153 dfss3 3145 . . . . 5  |-  ( X 
C_  U. ran  A  <->  A. x  e.  X  x  e.  U.
ran  A )
154152, 153sylibr 205 . . . 4  |-  ( ph  ->  X  C_  U. ran  A
)
155101, 154eqssd 3171 . . 3  |-  ( ph  ->  U. ran  A  =  X )
156 eqid 2258 . . . . . 6  |-  ( 0vec `  U )  =  (
0vec `  U )
15722, 156nvzcl 21152 . . . . 5  |-  ( U  e.  NrmCVec  ->  ( 0vec `  U
)  e.  X )
158 ne0i 3436 . . . . 5  |-  ( (
0vec `  U )  e.  X  ->  X  =/=  (/) )
15919, 157, 158mp2b 11 . . . 4  |-  X  =/=  (/)
16014bcth2 18714 . . . 4  |-  ( ( ( D  e.  (
CMet `  X )  /\  X  =/=  (/) )  /\  ( A : NN --> ( Clsd `  J )  /\  U. ran  A  =  X ) )  ->  E. n  e.  NN  ( ( int `  J ) `  ( A `  n )
)  =/=  (/) )
16124, 159, 160mpanl12 666 . . 3  |-  ( ( A : NN --> ( Clsd `  J )  /\  U. ran  A  =  X )  ->  E. n  e.  NN  ( ( int `  J
) `  ( A `  n ) )  =/=  (/) )
16295, 155, 161syl2anc 645 . 2  |-  ( ph  ->  E. n  e.  NN  ( ( int `  J
) `  ( A `  n ) )  =/=  (/) )
163 ffvelrn 5597 . . . . . . . . . . 11  |-  ( ( A : NN --> ( Clsd `  J )  /\  n  e.  NN )  ->  ( A `  n )  e.  ( Clsd `  J
) )
16498, 163sseldi 3153 . . . . . . . . . 10  |-  ( ( A : NN --> ( Clsd `  J )  /\  n  e.  NN )  ->  ( A `  n )  e.  ~P X )
165 elpwi 3607 . . . . . . . . . 10  |-  ( ( A `  n )  e.  ~P X  -> 
( A `  n
)  C_  X )
166164, 165syl 17 . . . . . . . . 9  |-  ( ( A : NN --> ( Clsd `  J )  /\  n  e.  NN )  ->  ( A `  n )  C_  X )
16795, 166sylan 459 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( A `
 n )  C_  X )
16889ntrss3 16759 . . . . . . . 8  |-  ( ( J  e.  Top  /\  ( A `  n ) 
C_  X )  -> 
( ( int `  J
) `  ( A `  n ) )  C_  X )
16988, 167, 168sylancr 647 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( int `  J ) `
 ( A `  n ) )  C_  X )
170169sseld 3154 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( y  e.  ( ( int `  J ) `  ( A `  n )
)  ->  y  e.  X ) )
17189ntropn 16748 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( A `  n ) 
C_  X )  -> 
( ( int `  J
) `  ( A `  n ) )  e.  J )
17288, 167, 171sylancr 647 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( int `  J ) `
 ( A `  n ) )  e.  J )
17314mopni2 18001 . . . . . . . . . 10  |-  ( ( D  e.  ( * Met `  X )  /\  ( ( int `  J ) `  ( A `  n )
)  e.  J  /\  y  e.  ( ( int `  J ) `  ( A `  n ) ) )  ->  E. x  e.  RR+  ( y (
ball `  D )
x )  C_  (
( int `  J
) `  ( A `  n ) ) )
17427, 173mp3an1 1269 . . . . . . . . 9  |-  ( ( ( ( int `  J
) `  ( A `  n ) )  e.  J  /\  y  e.  ( ( int `  J
) `  ( A `  n ) ) )  ->  E. x  e.  RR+  ( y ( ball `  D ) x ) 
C_  ( ( int `  J ) `  ( A `  n )
) )
175172, 174sylan 459 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  ( ( int `  J
) `  ( A `  n ) ) )  ->  E. x  e.  RR+  ( y ( ball `  D ) x ) 
C_  ( ( int `  J ) `  ( A `  n )
) )
176 elssuni 3829 . . . . . . . . . . . 12  |-  ( ( ( int `  J
) `  ( A `  n ) )  e.  J  ->  ( ( int `  J ) `  ( A `  n ) )  C_  U. J )
177176, 89syl6sseqr 3200 . . . . . . . . . . 11  |-  ( ( ( int `  J
) `  ( A `  n ) )  e.  J  ->  ( ( int `  J ) `  ( A `  n ) )  C_  X )
178172, 177syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( int `  J ) `
 ( A `  n ) )  C_  X )
179178sselda 3155 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  ( ( int `  J
) `  ( A `  n ) ) )  ->  y  e.  X
)
18089ntrss2 16756 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  ( A `  n ) 
C_  X )  -> 
( ( int `  J
) `  ( A `  n ) )  C_  ( A `  n ) )
18188, 167, 180sylancr 647 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( int `  J ) `
 ( A `  n ) )  C_  ( A `  n ) )
182 sstr2 3161 . . . . . . . . . . . . 13  |-  ( ( y ( ball `  D
) x )  C_  ( ( int `  J
) `  ( A `  n ) )  -> 
( ( ( int `  J ) `  ( A `  n )
)  C_  ( A `  n )  ->  (
y ( ball `  D
) x )  C_  ( A `  n ) ) )
183181, 182syl5com 28 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( y ( ball `  D
) x )  C_  ( ( int `  J
) `  ( A `  n ) )  -> 
( y ( ball `  D ) x ) 
C_  ( A `  n ) ) )
184183ad2antrr 709 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  ( (
y ( ball `  D
) x )  C_  ( ( int `  J
) `  ( A `  n ) )  -> 
( y ( ball `  D ) x ) 
C_  ( A `  n ) ) )
185 simpr 449 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X )  ->  y  e.  X )
186185, 27jctil 525 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X )  ->  ( D  e.  ( * Met `  X )  /\  y  e.  X )
)
187 rphalfcl 10345 . . . . . . . . . . . . . . 15  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR+ )
188187rpxrd 10358 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( x  /  2 )  e. 
RR* )
189 rpxr 10328 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  x  e. 
RR* )
190 rphalflt 10347 . . . . . . . . . . . . . 14  |-  ( x  e.  RR+  ->  ( x  /  2 )  < 
x )
191188, 189, 1903jca 1137 . . . . . . . . . . . . 13  |-  ( x  e.  RR+  ->  ( ( x  /  2 )  e.  RR*  /\  x  e.  RR*  /\  ( x  /  2 )  < 
x ) )
192 eqid 2258 . . . . . . . . . . . . . 14  |-  { z  e.  X  |  ( y D z )  <_  ( x  / 
2 ) }  =  { z  e.  X  |  ( y D z )  <_  (
x  /  2 ) }
19314, 192blsscls2 18012 . . . . . . . . . . . . 13  |-  ( ( ( D  e.  ( * Met `  X
)  /\  y  e.  X )  /\  (
( x  /  2
)  e.  RR*  /\  x  e.  RR*  /\  ( x  /  2 )  < 
x ) )  ->  { z  e.  X  |  ( y D z )  <_  (
x  /  2 ) }  C_  ( y
( ball `  D )
x ) )
194186, 191, 193syl2an 465 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  { z  e.  X  |  (
y D z )  <_  ( x  / 
2 ) }  C_  ( y ( ball `  D ) x ) )
195 sstr2 3161 . . . . . . . . . . . 12  |-  ( { z  e.  X  | 
( y D z )  <_  ( x  /  2 ) } 
C_  ( y (
ball `  D )
x )  ->  (
( y ( ball `  D ) x ) 
C_  ( A `  n )  ->  { z  e.  X  |  ( y D z )  <_  ( x  / 
2 ) }  C_  ( A `  n ) ) )
196194, 195syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  ( (
y ( ball `  D
) x )  C_  ( A `  n )  ->  { z  e.  X  |  ( y D z )  <_ 
( x  /  2
) }  C_  ( A `  n )
) )
197187adantl 454 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  ( x  /  2 )  e.  RR+ )
198 breq2 4001 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( x  / 
2 )  ->  (
( y D z )  <_  r  <->  ( y D z )  <_ 
( x  /  2
) ) )
199198rabbidv 2755 . . . . . . . . . . . . . . 15  |-  ( r  =  ( x  / 
2 )  ->  { z  e.  X  |  ( y D z )  <_  r }  =  { z  e.  X  |  ( y D z )  <_  (
x  /  2 ) } )
200199sseq1d 3180 . . . . . . . . . . . . . 14  |-  ( r  =  ( x  / 
2 )  ->  ( { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n )  <->  { z  e.  X  |  (
y D z )  <_  ( x  / 
2 ) }  C_  ( A `  n ) ) )
201200rcla4ev 2859 . . . . . . . . . . . . 13  |-  ( ( ( x  /  2
)  e.  RR+  /\  {
z  e.  X  | 
( y D z )  <_  ( x  /  2 ) } 
C_  ( A `  n ) )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) )
202201ex 425 . . . . . . . . . . . 12  |-  ( ( x  /  2 )  e.  RR+  ->  ( { z  e.  X  | 
( y D z )  <_  ( x  /  2 ) } 
C_  ( A `  n )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) )
203197, 202syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  ( {
z  e.  X  | 
( y D z )  <_  ( x  /  2 ) } 
C_  ( A `  n )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) )
204184, 196, 2033syld 53 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X
)  /\  x  e.  RR+ )  ->  ( (
y ( ball `  D
) x )  C_  ( ( int `  J
) `  ( A `  n ) )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) ) )
205204rexlimdva 2642 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  X )  ->  ( E. x  e.  RR+  (
y ( ball `  D
) x )  C_  ( ( int `  J
) `  ( A `  n ) )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) ) )
206179, 205syldan 458 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  ( ( int `  J
) `  ( A `  n ) ) )  ->  ( E. x  e.  RR+  ( y (
ball `  D )
x )  C_  (
( int `  J
) `  ( A `  n ) )  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) ) )
207175, 206mpd 16 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  y  e.  ( ( int `  J
) `  ( A `  n ) ) )  ->  E. r  e.  RR+  { z  e.  X  | 
( y D z )  <_  r }  C_  ( A `  n
) )
208207ex 425 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( y  e.  ( ( int `  J ) `  ( A `  n )
)  ->  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) )
209170, 208jcad 521 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( y  e.  ( ( int `  J ) `  ( A `  n )
)  ->  ( y  e.  X  /\  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) ) )
210209eximdv 2019 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( E. y  y  e.  ( ( int `  J
) `  ( A `  n ) )  ->  E. y ( y  e.  X  /\  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) ) )
211 n0 3439 . . . 4  |-  ( ( ( int `  J
) `  ( A `  n ) )  =/=  (/) 
<->  E. y  y  e.  ( ( int `  J
) `  ( A `  n ) ) )
212 df-rex 2524 . . . 4  |-  ( E. y  e.  X  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n )  <->  E. y ( y  e.  X  /\  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_ 
r }  C_  ( A `  n )
) )
213210, 211, 2123imtr4g 263 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( int `  J
) `  ( A `  n ) )  =/=  (/)  ->  E. y  e.  X  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) ) )
214213reximdva 2630 . 2  |-  ( ph  ->  ( E. n  e.  NN  ( ( int `  J ) `  ( A `  n )
)  =/=  (/)  ->  E. n  e.  NN  E. y  e.  X  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) ) )
215162, 214mpd 16 1  |-  ( ph  ->  E. n  e.  NN  E. y  e.  X  E. r  e.  RR+  { z  e.  X  |  ( y D z )  <_  r }  C_  ( A `  n ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939   E.wex 1537    = wceq 1619    e. wcel 1621    =/= wne 2421   A.wral 2518   E.wrex 2519   {crab 2522   _Vcvv 2763    C_ wss 3127   (/)c0 3430   ~Pcpw 3599   U.cuni 3801   |^|_ciin 3880   class class class wbr 3997    e. cmpt 4051   `'ccnv 4660   ran crn 4662   "cima 4664    Fn wfn 4668   -->wf 4669   ` cfv 4673  (class class class)co 5792   RRcr 8704   RR*cxr 8834    < clt 8835    <_ cle 8836    / cdiv 9391   NNcn 9714   2c2 9763   RR+crp 10321   * Metcxmt 16331   Metcme 16332   ballcbl 16333   MetOpencmopn 16334   Topctop 16593  TopOnctopon 16594   Clsdccld 16715   intcnt 16716    Cn ccn 16916   CMetcms 18642   NrmCVeccnv 21100   BaseSetcba 21102   0veccn0v 21104   normCVcnmcv 21106   IndMetcims 21107    BLnOp cblo 21280   CBanccbn 21401
This theorem is referenced by:  ubthlem3  21411
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-dc 8040  ax-cnex 8761  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781  ax-pre-mulgt0 8782  ax-pre-sup 8783  ax-addf 8784  ax-mulf 8785
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-iin 3882  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-er 6628  df-map 6742  df-pm 6743  df-en 6832  df-dom 6833  df-sdom 6834  df-sup 7162  df-pnf 8837  df-mnf 8838  df-xr 8839  df-ltxr 8840  df-le 8841  df-sub 9007  df-neg 9008  df-div 9392  df-n 9715  df-2 9772  df-3 9773  df-n0 9933  df-z 9992  df-uz 10198  df-q 10284  df-rp 10322  df-xneg 10419  df-xadd 10420  df-xmul 10421  df-ico 10628  df-seq 11013  df-exp 11071  df-cj 11549  df-re 11550  df-im 11551  df-sqr 11685  df-abs 11686  df-rest 13289  df-topgen 13306  df-xmet 16335  df-met 16336  df-bl 16337  df-mopn 16338  df-top 16598  df-bases 16600  df-topon 16601  df-cld 16718  df-ntr 16719  df-cls 16720  df-nei 16797  df-cn 16919  df-cnp 16920  df-lm 16921  df-fbas 17482  df-fg 17483  df-fil 17503  df-fm 17595  df-flim 17596  df-flf 17597  df-cfil 18643  df-cau 18644  df-cmet 18645  df-grpo 20818  df-gid 20819  df-ginv 20820  df-gdiv 20821  df-ablo 20909  df-vc 21062  df-nv 21108  df-va 21111  df-ba 21112  df-sm 21113  df-0v 21114  df-vs 21115  df-nmcv 21116  df-ims 21117  df-lno 21282  df-nmoo 21283  df-blo 21284  df-0o 21285  df-cbn 21402
  Copyright terms: Public domain W3C validator