MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbndrank Unicode version

Theorem unbndrank 7757
Description: The elements of a proper class have unbounded rank. Exercise 2 of [TakeutiZaring] p. 80. (Contributed by NM, 13-Oct-2003.)
Assertion
Ref Expression
unbndrank  |-  ( -.  A  e.  _V  ->  A. x  e.  On  E. y  e.  A  x  e.  ( rank `  y
) )
Distinct variable group:    x, y, A

Proof of Theorem unbndrank
StepHypRef Expression
1 rankon 7710 . . . . . . . 8  |-  ( rank `  y )  e.  On
2 ontri1 4607 . . . . . . . 8  |-  ( ( ( rank `  y
)  e.  On  /\  x  e.  On )  ->  ( ( rank `  y
)  C_  x  <->  -.  x  e.  ( rank `  y
) ) )
31, 2mpan 652 . . . . . . 7  |-  ( x  e.  On  ->  (
( rank `  y )  C_  x  <->  -.  x  e.  ( rank `  y )
) )
43ralbidv 2717 . . . . . 6  |-  ( x  e.  On  ->  ( A. y  e.  A  ( rank `  y )  C_  x  <->  A. y  e.  A  -.  x  e.  ( rank `  y ) ) )
5 ralnex 2707 . . . . . 6  |-  ( A. y  e.  A  -.  x  e.  ( rank `  y )  <->  -.  E. y  e.  A  x  e.  ( rank `  y )
)
64, 5syl6bb 253 . . . . 5  |-  ( x  e.  On  ->  ( A. y  e.  A  ( rank `  y )  C_  x  <->  -.  E. y  e.  A  x  e.  ( rank `  y )
) )
76rexbiia 2730 . . . 4  |-  ( E. x  e.  On  A. y  e.  A  ( rank `  y )  C_  x 
<->  E. x  e.  On  -.  E. y  e.  A  x  e.  ( rank `  y ) )
8 rexnal 2708 . . . 4  |-  ( E. x  e.  On  -.  E. y  e.  A  x  e.  ( rank `  y
)  <->  -.  A. x  e.  On  E. y  e.  A  x  e.  (
rank `  y )
)
97, 8bitri 241 . . 3  |-  ( E. x  e.  On  A. y  e.  A  ( rank `  y )  C_  x 
<->  -.  A. x  e.  On  E. y  e.  A  x  e.  (
rank `  y )
)
10 bndrank 7756 . . 3  |-  ( E. x  e.  On  A. y  e.  A  ( rank `  y )  C_  x  ->  A  e.  _V )
119, 10sylbir 205 . 2  |-  ( -. 
A. x  e.  On  E. y  e.  A  x  e.  ( rank `  y
)  ->  A  e.  _V )
1211con1i 123 1  |-  ( -.  A  e.  _V  ->  A. x  e.  On  E. y  e.  A  x  e.  ( rank `  y
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    e. wcel 1725   A.wral 2697   E.wrex 2698   _Vcvv 2948    C_ wss 3312   Oncon0 4573   ` cfv 5445   rankcrnk 7678
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-reg 7549  ax-inf2 7585
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-recs 6624  df-rdg 6659  df-r1 7679  df-rank 7680
  Copyright terms: Public domain W3C validator