Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbnn Unicode version

Theorem unbnn 7354
 Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 7602 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unbnn
Distinct variable group:   ,,

Proof of Theorem unbnn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssdomg 7144 . . . 4
21imp 419 . . 3
323adant3 977 . 2
4 simp1 957 . . 3
5 ssexg 4341 . . . . 5
65ancoms 440 . . . 4
763adant3 977 . . 3
8 eqid 2435 . . . . 5
98unblem4 7353 . . . 4
1093adant1 975 . . 3
11 f1dom2g 7116 . . 3
124, 7, 10, 11syl3anc 1184 . 2
13 sbth 7218 . 2
143, 12, 13syl2anc 643 1
 Colors of variables: wff set class Syntax hints:   wi 4   w3a 936   wcel 1725  wral 2697  wrex 2698  cvv 2948   cdif 3309   wss 3312  cint 4042   class class class wbr 4204   cmpt 4258   csuc 4575  com 4836   cres 4871  wf1 5442  crdg 6658   cen 7097   cdom 7098 This theorem is referenced by:  unbnn2  7355  isfinite2  7356  unbnn3  7602 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-recs 6624  df-rdg 6659  df-en 7101  df-dom 7102
 Copyright terms: Public domain W3C validator