MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unbnn Unicode version

Theorem unbnn 7046
Description: Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 7292 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.)
Assertion
Ref Expression
unbnn  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  ~~  om )
Distinct variable group:    x, y, A

Proof of Theorem unbnn
StepHypRef Expression
1 ssdomg 6840 . . . 4  |-  ( om  e.  _V  ->  ( A  C_  om  ->  A  ~<_  om ) )
21imp 420 . . 3  |-  ( ( om  e.  _V  /\  A  C_  om )  ->  A  ~<_  om )
323adant3 980 . 2  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  ~<_  om )
4 simp1 960 . . 3  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  om  e.  _V )
5 ssexg 4100 . . . . 5  |-  ( ( A  C_  om  /\  om  e.  _V )  ->  A  e.  _V )
65ancoms 441 . . . 4  |-  ( ( om  e.  _V  /\  A  C_  om )  ->  A  e.  _V )
763adant3 980 . . 3  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  e.  _V )
8 eqid 2256 . . . . 5  |-  ( rec ( ( z  e. 
_V  |->  |^| ( A  \  suc  z ) ) , 
|^| A )  |`  om )  =  ( rec ( ( z  e. 
_V  |->  |^| ( A  \  suc  z ) ) , 
|^| A )  |`  om )
98unblem4 7045 . . . 4  |-  ( ( A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  ( rec ( ( z  e. 
_V  |->  |^| ( A  \  suc  z ) ) , 
|^| A )  |`  om ) : om -1-1-> A
)
1093adant1 978 . . 3  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  ( rec ( ( z  e. 
_V  |->  |^| ( A  \  suc  z ) ) , 
|^| A )  |`  om ) : om -1-1-> A
)
11 f1dom2g 6812 . . 3  |-  ( ( om  e.  _V  /\  A  e.  _V  /\  ( rec ( ( z  e. 
_V  |->  |^| ( A  \  suc  z ) ) , 
|^| A )  |`  om ) : om -1-1-> A
)  ->  om  ~<_  A )
124, 7, 10, 11syl3anc 1187 . 2  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  om  ~<_  A )
13 sbth 6914 . 2  |-  ( ( A  ~<_  om  /\  om  ~<_  A )  ->  A  ~~  om )
143, 12, 13syl2anc 645 1  |-  ( ( om  e.  _V  /\  A  C_  om  /\  A. x  e.  om  E. y  e.  A  x  e.  y )  ->  A  ~~  om )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    e. wcel 1621   A.wral 2516   E.wrex 2517   _Vcvv 2740    \ cdif 3091    C_ wss 3094   |^|cint 3803   class class class wbr 3963    e. cmpt 4017   suc csuc 4331   omcom 4593    |` cres 4628   -1-1->wf1 4635   reccrdg 6355    ~~ cen 6793    ~<_ cdom 6794
This theorem is referenced by:  unbnn2  7047  isfinite2  7048  unbnn3  7292
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-recs 6321  df-rdg 6356  df-en 6797  df-dom 6798
  Copyright terms: Public domain W3C validator