Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  undi Unicode version

Theorem undi 3580
 Description: Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
undi

Proof of Theorem undi
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elin 3522 . . . 4
21orbi2i 506 . . 3
3 ordi 835 . . 3
4 elin 3522 . . . 4
5 elun 3480 . . . . 5
6 elun 3480 . . . . 5
75, 6anbi12i 679 . . . 4
84, 7bitr2i 242 . . 3
92, 3, 83bitri 263 . 2
109uneqri 3481 1
 Colors of variables: wff set class Syntax hints:   wo 358   wa 359   wceq 1652   wcel 1725   cun 3310   cin 3311 This theorem is referenced by:  undir  3582  dfif4  3742  dfif5  3743 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-v 2950  df-un 3317  df-in 3319
 Copyright terms: Public domain W3C validator