MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undif3 Unicode version

Theorem undif3 3404
Description: An equality involving class union and class difference. The first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 17-Apr-2012.)
Assertion
Ref Expression
undif3  |-  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  ( C  \  A ) )

Proof of Theorem undif3
StepHypRef Expression
1 elun 3291 . . . 4  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2 pm4.53 480 . . . . 5  |-  ( -.  ( x  e.  C  /\  -.  x  e.  A
)  <->  ( -.  x  e.  C  \/  x  e.  A ) )
3 eldif 3137 . . . . 5  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
42, 3xchnxbir 302 . . . 4  |-  ( -.  x  e.  ( C 
\  A )  <->  ( -.  x  e.  C  \/  x  e.  A )
)
51, 4anbi12i 681 . . 3  |-  ( ( x  e.  ( A  u.  B )  /\  -.  x  e.  ( C  \  A ) )  <-> 
( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
6 eldif 3137 . . 3  |-  ( x  e.  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
7 elun 3291 . . . 4  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C
) ) )
8 eldif 3137 . . . . 5  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
98orbi2i 507 . . . 4  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
10 orc 376 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
11 olc 375 . . . . . . 7  |-  ( x  e.  A  ->  ( -.  x  e.  C  \/  x  e.  A
) )
1210, 11jca 520 . . . . . 6  |-  ( x  e.  A  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
13 olc 375 . . . . . . 7  |-  ( x  e.  B  ->  (
x  e.  A  \/  x  e.  B )
)
14 orc 376 . . . . . . 7  |-  ( -.  x  e.  C  -> 
( -.  x  e.  C  \/  x  e.  A ) )
1513, 14anim12i 551 . . . . . 6  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
1612, 15jaoi 370 . . . . 5  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
17 simpl 445 . . . . . . 7  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  x  e.  A )
1817orcd 383 . . . . . 6  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
19 olc 375 . . . . . 6  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
20 orc 376 . . . . . . 7  |-  ( x  e.  A  ->  (
x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
2120adantr 453 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
2220adantl 454 . . . . . 6  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
2318, 19, 21, 22ccase 917 . . . . 5  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
2416, 23impbii 182 . . . 4  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
257, 9, 243bitri 264 . . 3  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
265, 6, 253bitr4ri 271 . 2  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  x  e.  (
( A  u.  B
)  \  ( C  \  A ) ) )
2726eqriv 2255 1  |-  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  ( C  \  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    \/ wo 359    /\ wa 360    = wceq 1619    e. wcel 1621    \ cdif 3124    u. cun 3125
This theorem is referenced by:  undifabs  3506  llycmpkgen2  17208
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-v 2765  df-dif 3130  df-un 3132
  Copyright terms: Public domain W3C validator