Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undif3VD Unicode version

Theorem undif3VD 27927
Description: The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual deduction proof of undif3 3431. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. undif3 3431 is undif3VD 27927 without virtual deductions and was automatically derived from undif3VD 27927.
1::  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C ) ) )
2::  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
3:2:  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
4:1,3:  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
5::  |-  (. x  e.  A  ->.  x  e.  A ).
6:5:  |-  (. x  e.  A  ->.  ( x  e.  A  \/  x  e.  B ) ).
7:5:  |-  (. x  e.  A  ->.  ( -.  x  e.  C  \/  x  e.  A ) ).
8:6,7:  |-  (. x  e.  A  ->.  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) ).
9:8:  |-  ( x  e.  A  ->  ( ( x  e.  A  \/  x  e.  B )  /\  (  -.  x  e.  C  \/  x  e.  A ) ) )
10::  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  ( x  e.  B  /\  -.  x  e.  C ) ).
11:10:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  x  e.  B ).
12:10:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  -.  x  e.  C  ).
13:11:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  ( x  e.  A  \/  x  e.  B ) ).
14:12:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  ( -.  x  e.  C  \/  x  e.  A ) ).
15:13,14:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) ).
16:15:  |-  ( ( x  e.  B  /\  -.  x  e.  C )  ->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
17:9,16:  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) )  ->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
18::  |-  (. ( x  e.  A  /\  -.  x  e.  C )  ->.  ( x  e.  A  /\  -.  x  e.  C ) ).
19:18:  |-  (. ( x  e.  A  /\  -.  x  e.  C )  ->.  x  e.  A ).
20:18:  |-  (. ( x  e.  A  /\  -.  x  e.  C )  ->.  -.  x  e.  C  ).
21:18:  |-  (. ( x  e.  A  /\  -.  x  e.  C )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) ).
22:21:  |-  ( ( x  e.  A  /\  -.  x  e.  C )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
23::  |-  (. ( x  e.  A  /\  x  e.  A )  ->.  ( x  e.  A  /\  x  e.  A ) ).
24:23:  |-  (. ( x  e.  A  /\  x  e.  A )  ->.  x  e.  A ).
25:24:  |-  (. ( x  e.  A  /\  x  e.  A )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) ).
26:25:  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x  e.  A  \/  (  x  e.  B  /\  -.  x  e.  C ) ) )
27:10:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) ).
28:27:  |-  ( ( x  e.  B  /\  -.  x  e.  C )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
29::  |-  (. ( x  e.  B  /\  x  e.  A )  ->.  ( x  e.  B  /\  x  e.  A ) ).
30:29:  |-  (. ( x  e.  B  /\  x  e.  A )  ->.  x  e.  A ).
31:30:  |-  (. ( x  e.  B  /\  x  e.  A )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) ).
32:31:  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  A  \/  (  x  e.  B  /\  -.  x  e.  C ) ) )
33:22,26:  |-  ( ( ( x  e.  A  /\  -.  x  e.  C )  \/  ( x  e.  A  /\  x  e.  A ) )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
34:28,32:  |-  ( ( ( x  e.  B  /\  -.  x  e.  C )  \/  ( x  e.  B  /\  x  e.  A ) )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
35:33,34:  |-  ( ( ( ( x  e.  A  /\  -.  x  e.  C )  \/  ( x  e.  A  /\  x  e.  A ) )  \/  ( ( x  e.  B  /\  -.  x  e.  C )  \/  ( x  e.  B  /\  x  e.  A ) ) )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
36::  |-  ( ( ( ( x  e.  A  /\  -.  x  e.  C )  \/  ( x  e.  A  /\  x  e.  A ) )  \/  ( ( x  e.  B  /\  -.  x  e.  C )  \/  ( x  e.  B  /\  x  e.  A ) ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
37:36,35:  |-  ( ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
38:17,37:  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
39::  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
40:39:  |-  ( -.  x  e.  ( C  \  A )  <->  -.  ( x  e.  C  /\  -.  x  e.  A ) )
41::  |-  ( -.  ( x  e.  C  /\  -.  x  e.  A )  <->  ( -.  x  e.  C  \/  x  e.  A ) )
42:40,41:  |-  ( -.  x  e.  ( C  \  A )  <->  ( -.  x  e.  C  \/  x  e.  A ) )
43::  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B  ) )
44:43,42:  |-  ( ( x  e.  ( A  u.  B )  /\  -.  x  e.  ( C  \  A )  )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  /\  x  e.  A ) ) )
45::  |-  ( x  e.  ( ( A  u.  B )  \  ( C  \  A ) )  <->  (  x  e.  ( A  u.  B )  /\  -.  x  e.  ( C  \  A ) ) )
46:45,44:  |-  ( x  e.  ( ( A  u.  B )  \  ( C  \  A ) )  <->  (  ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
47:4,38:  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
48:46,47:  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
49:48:  |-  A. x ( x  e.  ( A  u.  ( B  \  C ) )  <->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
qed:49:  |-  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  ( C  \  A ) )
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undif3VD  |-  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  ( C  \  A ) )
Dummy variable  x is distinct from all other variables.

Proof of Theorem undif3VD
StepHypRef Expression
1 elun 3318 . . . . . 6  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C
) ) )
2 eldif 3164 . . . . . . 7  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
32orbi2i 507 . . . . . 6  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
41, 3bitri 242 . . . . 5  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C )
) )
5 idn1 27614 . . . . . . . . . 10  |-  (. x  e.  A  ->.  x  e.  A ).
6 orc 376 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
75, 6e1_ 27668 . . . . . . . . 9  |-  (. x  e.  A  ->.  ( x  e.  A  \/  x  e.  B ) ).
8 olc 375 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( -.  x  e.  C  \/  x  e.  A
) )
95, 8e1_ 27668 . . . . . . . . 9  |-  (. x  e.  A  ->.  ( -.  x  e.  C  \/  x  e.  A ) ).
10 pm3.2 436 . . . . . . . . 9  |-  ( ( x  e.  A  \/  x  e.  B )  ->  ( ( -.  x  e.  C  \/  x  e.  A )  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) ) )
117, 9, 10e11 27729 . . . . . . . 8  |-  (. x  e.  A  ->.  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) ).
1211in1 27611 . . . . . . 7  |-  ( x  e.  A  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
13 idn1 27614 . . . . . . . . . . 11  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  ( x  e.  B  /\  -.  x  e.  C
) ).
14 simpl 445 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  x  e.  B )
1513, 14e1_ 27668 . . . . . . . . . 10  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  x  e.  B ).
16 olc 375 . . . . . . . . . 10  |-  ( x  e.  B  ->  (
x  e.  A  \/  x  e.  B )
)
1715, 16e1_ 27668 . . . . . . . . 9  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  ( x  e.  A  \/  x  e.  B
) ).
18 simpr 449 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  -.  x  e.  C )
1913, 18e1_ 27668 . . . . . . . . . 10  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  -.  x  e.  C ).
20 orc 376 . . . . . . . . . 10  |-  ( -.  x  e.  C  -> 
( -.  x  e.  C  \/  x  e.  A ) )
2119, 20e1_ 27668 . . . . . . . . 9  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  ( -.  x  e.  C  \/  x  e.  A ) ).
2217, 21, 10e11 27729 . . . . . . . 8  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) ).
2322in1 27611 . . . . . . 7  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
2412, 23jaoi 370 . . . . . 6  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
25 anddi 842 . . . . . . . 8  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  <->  ( ( ( x  e.  A  /\  -.  x  e.  C
)  \/  ( x  e.  A  /\  x  e.  A ) )  \/  ( ( x  e.  B  /\  -.  x  e.  C )  \/  (
x  e.  B  /\  x  e.  A )
) ) )
2625bicomi 195 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  -.  x  e.  C )  \/  (
x  e.  A  /\  x  e.  A )
)  \/  ( ( x  e.  B  /\  -.  x  e.  C
)  \/  ( x  e.  B  /\  x  e.  A ) ) )  <-> 
( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
27 idn1 27614 . . . . . . . . . . 11  |-  (. (
x  e.  A  /\  -.  x  e.  C
) 
->.  ( x  e.  A  /\  -.  x  e.  C
) ).
28 simpl 445 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  x  e.  A )
2928orcd 383 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
3027, 29e1_ 27668 . . . . . . . . . 10  |-  (. (
x  e.  A  /\  -.  x  e.  C
) 
->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) ).
3130in1 27611 . . . . . . . . 9  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
32 idn1 27614 . . . . . . . . . . . 12  |-  (. (
x  e.  A  /\  x  e.  A )  ->.  ( x  e.  A  /\  x  e.  A ) ).
33 simpl 445 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  x  e.  A )  ->  x  e.  A )
3432, 33e1_ 27668 . . . . . . . . . . 11  |-  (. (
x  e.  A  /\  x  e.  A )  ->.  x  e.  A ).
35 orc 376 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
3634, 35e1_ 27668 . . . . . . . . . 10  |-  (. (
x  e.  A  /\  x  e.  A )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) ).
3736in1 27611 . . . . . . . . 9  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
3831, 37jaoi 370 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  -.  x  e.  C
)  \/  ( x  e.  A  /\  x  e.  A ) )  -> 
( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
39 olc 375 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
4013, 39e1_ 27668 . . . . . . . . . 10  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) ).
4140in1 27611 . . . . . . . . 9  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
42 idn1 27614 . . . . . . . . . . . 12  |-  (. (
x  e.  B  /\  x  e.  A )  ->.  ( x  e.  B  /\  x  e.  A ) ).
43 simpr 449 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  x  e.  A )  ->  x  e.  A )
4442, 43e1_ 27668 . . . . . . . . . . 11  |-  (. (
x  e.  B  /\  x  e.  A )  ->.  x  e.  A ).
4544, 35e1_ 27668 . . . . . . . . . 10  |-  (. (
x  e.  B  /\  x  e.  A )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) ).
4645in1 27611 . . . . . . . . 9  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
4741, 46jaoi 370 . . . . . . . 8  |-  ( ( ( x  e.  B  /\  -.  x  e.  C
)  \/  ( x  e.  B  /\  x  e.  A ) )  -> 
( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
4838, 47jaoi 370 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  -.  x  e.  C )  \/  (
x  e.  A  /\  x  e.  A )
)  \/  ( ( x  e.  B  /\  -.  x  e.  C
)  \/  ( x  e.  B  /\  x  e.  A ) ) )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C )
) )
4926, 48sylbir 206 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
5024, 49impbii 182 . . . . 5  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
514, 50bitri 242 . . . 4  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
52 eldif 3164 . . . . 5  |-  ( x  e.  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
53 elun 3318 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
54 eldif 3164 . . . . . . . 8  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
5554notbii 289 . . . . . . 7  |-  ( -.  x  e.  ( C 
\  A )  <->  -.  (
x  e.  C  /\  -.  x  e.  A
) )
56 pm4.53 480 . . . . . . 7  |-  ( -.  ( x  e.  C  /\  -.  x  e.  A
)  <->  ( -.  x  e.  C  \/  x  e.  A ) )
5755, 56bitri 242 . . . . . 6  |-  ( -.  x  e.  ( C 
\  A )  <->  ( -.  x  e.  C  \/  x  e.  A )
)
5853, 57anbi12i 680 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  -.  x  e.  ( C  \  A ) )  <-> 
( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
5952, 58bitri 242 . . . 4  |-  ( x  e.  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
6051, 59bitr4i 245 . . 3  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  x  e.  (
( A  u.  B
)  \  ( C  \  A ) ) )
6160ax-gen 1534 . 2  |-  A. x
( x  e.  ( A  u.  ( B 
\  C ) )  <-> 
x  e.  ( ( A  u.  B ) 
\  ( C  \  A ) ) )
62 dfcleq 2279 . . 3  |-  ( ( A  u.  ( B 
\  C ) )  =  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  A. x
( x  e.  ( A  u.  ( B 
\  C ) )  <-> 
x  e.  ( ( A  u.  B ) 
\  ( C  \  A ) ) ) )
6362biimpri 199 . 2  |-  ( A. x ( x  e.  ( A  u.  ( B  \  C ) )  <-> 
x  e.  ( ( A  u.  B ) 
\  ( C  \  A ) ) )  ->  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B ) 
\  ( C  \  A ) ) )
6461, 63e0_ 27816 1  |-  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  ( C  \  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1528    = wceq 1624    e. wcel 1685    \ cdif 3151    u. cun 3152
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-v 2792  df-dif 3157  df-un 3159  df-vd1 27610
  Copyright terms: Public domain W3C validator