Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  undif3VD Unicode version

Theorem undif3VD 27671
Description: The first equality of Exercise 13 of [TakeutiZaring] p. 22. Virtual deduction proof of undif3 3371. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. undif3 3371 is undif3VD 27671 without virtual deductions and was automatically derived from undif3VD 27671.
1::  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C ) ) )
2::  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
3:2:  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
4:1,3:  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
5::  |-  (. x  e.  A  ->.  x  e.  A ).
6:5:  |-  (. x  e.  A  ->.  ( x  e.  A  \/  x  e.  B ) ).
7:5:  |-  (. x  e.  A  ->.  ( -.  x  e.  C  \/  x  e.  A ) ).
8:6,7:  |-  (. x  e.  A  ->.  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) ).
9:8:  |-  ( x  e.  A  ->  ( ( x  e.  A  \/  x  e.  B )  /\  (  -.  x  e.  C  \/  x  e.  A ) ) )
10::  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  ( x  e.  B  /\  -.  x  e.  C ) ).
11:10:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  x  e.  B ).
12:10:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  -.  x  e.  C  ).
13:11:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  ( x  e.  A  \/  x  e.  B ) ).
14:12:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  ( -.  x  e.  C  \/  x  e.  A ) ).
15:13,14:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) ).
16:15:  |-  ( ( x  e.  B  /\  -.  x  e.  C )  ->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
17:9,16:  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) )  ->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
18::  |-  (. ( x  e.  A  /\  -.  x  e.  C )  ->.  ( x  e.  A  /\  -.  x  e.  C ) ).
19:18:  |-  (. ( x  e.  A  /\  -.  x  e.  C )  ->.  x  e.  A ).
20:18:  |-  (. ( x  e.  A  /\  -.  x  e.  C )  ->.  -.  x  e.  C  ).
21:18:  |-  (. ( x  e.  A  /\  -.  x  e.  C )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) ).
22:21:  |-  ( ( x  e.  A  /\  -.  x  e.  C )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
23::  |-  (. ( x  e.  A  /\  x  e.  A )  ->.  ( x  e.  A  /\  x  e.  A ) ).
24:23:  |-  (. ( x  e.  A  /\  x  e.  A )  ->.  x  e.  A ).
25:24:  |-  (. ( x  e.  A  /\  x  e.  A )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) ).
26:25:  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x  e.  A  \/  (  x  e.  B  /\  -.  x  e.  C ) ) )
27:10:  |-  (. ( x  e.  B  /\  -.  x  e.  C )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) ).
28:27:  |-  ( ( x  e.  B  /\  -.  x  e.  C )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
29::  |-  (. ( x  e.  B  /\  x  e.  A )  ->.  ( x  e.  B  /\  x  e.  A ) ).
30:29:  |-  (. ( x  e.  B  /\  x  e.  A )  ->.  x  e.  A ).
31:30:  |-  (. ( x  e.  B  /\  x  e.  A )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) ).
32:31:  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  A  \/  (  x  e.  B  /\  -.  x  e.  C ) ) )
33:22,26:  |-  ( ( ( x  e.  A  /\  -.  x  e.  C )  \/  ( x  e.  A  /\  x  e.  A ) )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
34:28,32:  |-  ( ( ( x  e.  B  /\  -.  x  e.  C )  \/  ( x  e.  B  /\  x  e.  A ) )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
35:33,34:  |-  ( ( ( ( x  e.  A  /\  -.  x  e.  C )  \/  ( x  e.  A  /\  x  e.  A ) )  \/  ( ( x  e.  B  /\  -.  x  e.  C )  \/  ( x  e.  B  /\  x  e.  A ) ) )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
36::  |-  ( ( ( ( x  e.  A  /\  -.  x  e.  C )  \/  ( x  e.  A  /\  x  e.  A ) )  \/  ( ( x  e.  B  /\  -.  x  e.  C )  \/  ( x  e.  B  /\  x  e.  A ) ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
37:36,35:  |-  ( ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) ) )
38:17,37:  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
39::  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
40:39:  |-  ( -.  x  e.  ( C  \  A )  <->  -.  ( x  e.  C  /\  -.  x  e.  A ) )
41::  |-  ( -.  ( x  e.  C  /\  -.  x  e.  A )  <->  ( -.  x  e.  C  \/  x  e.  A ) )
42:40,41:  |-  ( -.  x  e.  ( C  \  A )  <->  ( -.  x  e.  C  \/  x  e.  A ) )
43::  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B  ) )
44:43,42:  |-  ( ( x  e.  ( A  u.  B )  /\  -.  x  e.  ( C  \  A )  )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  /\  x  e.  A ) ) )
45::  |-  ( x  e.  ( ( A  u.  B )  \  ( C  \  A ) )  <->  (  x  e.  ( A  u.  B )  /\  -.  x  e.  ( C  \  A ) ) )
46:45,44:  |-  ( x  e.  ( ( A  u.  B )  \  ( C  \  A ) )  <->  (  ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
47:4,38:  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
48:46,47:  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
49:48:  |-  A. x ( x  e.  ( A  u.  ( B  \  C ) )  <->  x  e.  ( ( A  u.  B )  \  ( C  \  A ) ) )
qed:49:  |-  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  ( C  \  A ) )
(Contributed by Alan Sare, 17-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
undif3VD  |-  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  ( C  \  A ) )

Proof of Theorem undif3VD
StepHypRef Expression
1 elun 3258 . . . . . 6  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  x  e.  ( B  \  C
) ) )
2 eldif 3104 . . . . . . 7  |-  ( x  e.  ( B  \  C )  <->  ( x  e.  B  /\  -.  x  e.  C ) )
32orbi2i 507 . . . . . 6  |-  ( ( x  e.  A  \/  x  e.  ( B  \  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
41, 3bitri 242 . . . . 5  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C )
) )
5 idn1 27358 . . . . . . . . . 10  |-  (. x  e.  A  ->.  x  e.  A ).
6 orc 376 . . . . . . . . . 10  |-  ( x  e.  A  ->  (
x  e.  A  \/  x  e.  B )
)
75, 6e1_ 27412 . . . . . . . . 9  |-  (. x  e.  A  ->.  ( x  e.  A  \/  x  e.  B ) ).
8 olc 375 . . . . . . . . . 10  |-  ( x  e.  A  ->  ( -.  x  e.  C  \/  x  e.  A
) )
95, 8e1_ 27412 . . . . . . . . 9  |-  (. x  e.  A  ->.  ( -.  x  e.  C  \/  x  e.  A ) ).
10 pm3.2 436 . . . . . . . . 9  |-  ( ( x  e.  A  \/  x  e.  B )  ->  ( ( -.  x  e.  C  \/  x  e.  A )  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) ) )
117, 9, 10e11 27473 . . . . . . . 8  |-  (. x  e.  A  ->.  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) ).
1211in1 27355 . . . . . . 7  |-  ( x  e.  A  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
13 idn1 27358 . . . . . . . . . . 11  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  ( x  e.  B  /\  -.  x  e.  C
) ).
14 simpl 445 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  x  e.  B )
1513, 14e1_ 27412 . . . . . . . . . 10  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  x  e.  B ).
16 olc 375 . . . . . . . . . 10  |-  ( x  e.  B  ->  (
x  e.  A  \/  x  e.  B )
)
1715, 16e1_ 27412 . . . . . . . . 9  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  ( x  e.  A  \/  x  e.  B
) ).
18 simpr 449 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  -.  x  e.  C )
1913, 18e1_ 27412 . . . . . . . . . 10  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  -.  x  e.  C ).
20 orc 376 . . . . . . . . . 10  |-  ( -.  x  e.  C  -> 
( -.  x  e.  C  \/  x  e.  A ) )
2119, 20e1_ 27412 . . . . . . . . 9  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  ( -.  x  e.  C  \/  x  e.  A ) ).
2217, 21, 10e11 27473 . . . . . . . 8  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) ).
2322in1 27355 . . . . . . 7  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
2412, 23jaoi 370 . . . . . 6  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  ->  (
( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
) )
25 anddi 845 . . . . . . . 8  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  <->  ( ( ( x  e.  A  /\  -.  x  e.  C
)  \/  ( x  e.  A  /\  x  e.  A ) )  \/  ( ( x  e.  B  /\  -.  x  e.  C )  \/  (
x  e.  B  /\  x  e.  A )
) ) )
2625bicomi 195 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  -.  x  e.  C )  \/  (
x  e.  A  /\  x  e.  A )
)  \/  ( ( x  e.  B  /\  -.  x  e.  C
)  \/  ( x  e.  B  /\  x  e.  A ) ) )  <-> 
( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
27 idn1 27358 . . . . . . . . . . 11  |-  (. (
x  e.  A  /\  -.  x  e.  C
) 
->.  ( x  e.  A  /\  -.  x  e.  C
) ).
28 simpl 445 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  x  e.  A )
2928orcd 383 . . . . . . . . . . 11  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
3027, 29e1_ 27412 . . . . . . . . . 10  |-  (. (
x  e.  A  /\  -.  x  e.  C
) 
->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) ).
3130in1 27355 . . . . . . . . 9  |-  ( ( x  e.  A  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
32 idn1 27358 . . . . . . . . . . . 12  |-  (. (
x  e.  A  /\  x  e.  A )  ->.  ( x  e.  A  /\  x  e.  A ) ).
33 simpl 445 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  x  e.  A )  ->  x  e.  A )
3432, 33e1_ 27412 . . . . . . . . . . 11  |-  (. (
x  e.  A  /\  x  e.  A )  ->.  x  e.  A ).
35 orc 376 . . . . . . . . . . 11  |-  ( x  e.  A  ->  (
x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
3634, 35e1_ 27412 . . . . . . . . . 10  |-  (. (
x  e.  A  /\  x  e.  A )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) ).
3736in1 27355 . . . . . . . . 9  |-  ( ( x  e.  A  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
3831, 37jaoi 370 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  -.  x  e.  C
)  \/  ( x  e.  A  /\  x  e.  A ) )  -> 
( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
39 olc 375 . . . . . . . . . . 11  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
4013, 39e1_ 27412 . . . . . . . . . 10  |-  (. (
x  e.  B  /\  -.  x  e.  C
) 
->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) ).
4140in1 27355 . . . . . . . . 9  |-  ( ( x  e.  B  /\  -.  x  e.  C
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
42 idn1 27358 . . . . . . . . . . . 12  |-  (. (
x  e.  B  /\  x  e.  A )  ->.  ( x  e.  B  /\  x  e.  A ) ).
43 simpr 449 . . . . . . . . . . . 12  |-  ( ( x  e.  B  /\  x  e.  A )  ->  x  e.  A )
4442, 43e1_ 27412 . . . . . . . . . . 11  |-  (. (
x  e.  B  /\  x  e.  A )  ->.  x  e.  A ).
4544, 35e1_ 27412 . . . . . . . . . 10  |-  (. (
x  e.  B  /\  x  e.  A )  ->.  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) ).
4645in1 27355 . . . . . . . . 9  |-  ( ( x  e.  B  /\  x  e.  A )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
4741, 46jaoi 370 . . . . . . . 8  |-  ( ( ( x  e.  B  /\  -.  x  e.  C
)  \/  ( x  e.  B  /\  x  e.  A ) )  -> 
( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) ) )
4838, 47jaoi 370 . . . . . . 7  |-  ( ( ( ( x  e.  A  /\  -.  x  e.  C )  \/  (
x  e.  A  /\  x  e.  A )
)  \/  ( ( x  e.  B  /\  -.  x  e.  C
)  \/  ( x  e.  B  /\  x  e.  A ) ) )  ->  ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C )
) )
4926, 48sylbir 206 . . . . . 6  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( -.  x  e.  C  \/  x  e.  A )
)  ->  ( x  e.  A  \/  (
x  e.  B  /\  -.  x  e.  C
) ) )
5024, 49impbii 182 . . . . 5  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  -.  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
514, 50bitri 242 . . . 4  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  ( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
52 eldif 3104 . . . . 5  |-  ( x  e.  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  ( x  e.  ( A  u.  B
)  /\  -.  x  e.  ( C  \  A
) ) )
53 elun 3258 . . . . . 6  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
54 eldif 3104 . . . . . . . 8  |-  ( x  e.  ( C  \  A )  <->  ( x  e.  C  /\  -.  x  e.  A ) )
5554notbii 289 . . . . . . 7  |-  ( -.  x  e.  ( C 
\  A )  <->  -.  (
x  e.  C  /\  -.  x  e.  A
) )
56 pm4.53 480 . . . . . . 7  |-  ( -.  ( x  e.  C  /\  -.  x  e.  A
)  <->  ( -.  x  e.  C  \/  x  e.  A ) )
5755, 56bitri 242 . . . . . 6  |-  ( -.  x  e.  ( C 
\  A )  <->  ( -.  x  e.  C  \/  x  e.  A )
)
5853, 57anbi12i 681 . . . . 5  |-  ( ( x  e.  ( A  u.  B )  /\  -.  x  e.  ( C  \  A ) )  <-> 
( ( x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A
) ) )
5952, 58bitri 242 . . . 4  |-  ( x  e.  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( -.  x  e.  C  \/  x  e.  A ) ) )
6051, 59bitr4i 245 . . 3  |-  ( x  e.  ( A  u.  ( B  \  C ) )  <->  x  e.  (
( A  u.  B
)  \  ( C  \  A ) ) )
6160ax-gen 1536 . 2  |-  A. x
( x  e.  ( A  u.  ( B 
\  C ) )  <-> 
x  e.  ( ( A  u.  B ) 
\  ( C  \  A ) ) )
62 dfcleq 2250 . . 3  |-  ( ( A  u.  ( B 
\  C ) )  =  ( ( A  u.  B )  \ 
( C  \  A
) )  <->  A. x
( x  e.  ( A  u.  ( B 
\  C ) )  <-> 
x  e.  ( ( A  u.  B ) 
\  ( C  \  A ) ) ) )
6362biimpri 199 . 2  |-  ( A. x ( x  e.  ( A  u.  ( B  \  C ) )  <-> 
x  e.  ( ( A  u.  B ) 
\  ( C  \  A ) ) )  ->  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B ) 
\  ( C  \  A ) ) )
6461, 63e0_ 27560 1  |-  ( A  u.  ( B  \  C ) )  =  ( ( A  u.  B )  \  ( C  \  A ) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621    \ cdif 3091    u. cun 3092
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-v 2742  df-dif 3097  df-un 3099  df-vd1 27354
  Copyright terms: Public domain W3C validator