MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undifv Unicode version

Theorem undifv 3529
Description: The union of a class and its complement is the universe. Theorem 5.1(5) of [Stoll] p. 17. (Contributed by NM, 17-Aug-2004.)
Assertion
Ref Expression
undifv  |-  ( A  u.  ( _V  \  A ) )  =  _V

Proof of Theorem undifv
StepHypRef Expression
1 dfun3 3408 . 2  |-  ( A  u.  ( _V  \  A ) )  =  ( _V  \  (
( _V  \  A
)  i^i  ( _V  \  ( _V  \  A
) ) ) )
2 disjdif 3527 . . 3  |-  ( ( _V  \  A )  i^i  ( _V  \ 
( _V  \  A
) ) )  =  (/)
32difeq2i 3292 . 2  |-  ( _V 
\  ( ( _V 
\  A )  i^i  ( _V  \  ( _V  \  A ) ) ) )  =  ( _V  \  (/) )
4 dif0 3525 . 2  |-  ( _V 
\  (/) )  =  _V
51, 3, 43eqtri 2308 1  |-  ( A  u.  ( _V  \  A ) )  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1623   _Vcvv 2789    \ cdif 3150    u. cun 3151    i^i cin 3152   (/)c0 3456
This theorem is referenced by:  undif1  3530  dfif4  3577  hashf  11340  fullfunfnv  23894  hfext  24223
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rab 2553  df-v 2791  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457
  Copyright terms: Public domain W3C validator