MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undir Unicode version

Theorem undir 3419
Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
undir  |-  ( ( A  i^i  B )  u.  C )  =  ( ( A  u.  C )  i^i  ( B  u.  C )
)

Proof of Theorem undir
StepHypRef Expression
1 undi 3417 . 2  |-  ( C  u.  ( A  i^i  B ) )  =  ( ( C  u.  A
)  i^i  ( C  u.  B ) )
2 uncom 3320 . 2  |-  ( ( A  i^i  B )  u.  C )  =  ( C  u.  ( A  i^i  B ) )
3 uncom 3320 . . 3  |-  ( A  u.  C )  =  ( C  u.  A
)
4 uncom 3320 . . 3  |-  ( B  u.  C )  =  ( C  u.  B
)
53, 4ineq12i 3369 . 2  |-  ( ( A  u.  C )  i^i  ( B  u.  C ) )  =  ( ( C  u.  A )  i^i  ( C  u.  B )
)
61, 2, 53eqtr4i 2314 1  |-  ( ( A  i^i  B )  u.  C )  =  ( ( A  u.  C )  i^i  ( B  u.  C )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1628    u. cun 3151    i^i cin 3152
This theorem is referenced by:  undif1  3530  dfif4  3577  dfif5  3578  islimrs4  24981
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-v 2791  df-un 3158  df-in 3160
  Copyright terms: Public domain W3C validator