MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  undir Unicode version

Theorem undir 3325
Description: Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
Assertion
Ref Expression
undir  |-  ( ( A  i^i  B )  u.  C )  =  ( ( A  u.  C )  i^i  ( B  u.  C )
)

Proof of Theorem undir
StepHypRef Expression
1 undi 3323 . 2  |-  ( C  u.  ( A  i^i  B ) )  =  ( ( C  u.  A
)  i^i  ( C  u.  B ) )
2 uncom 3229 . 2  |-  ( ( A  i^i  B )  u.  C )  =  ( C  u.  ( A  i^i  B ) )
3 uncom 3229 . . 3  |-  ( A  u.  C )  =  ( C  u.  A
)
4 uncom 3229 . . 3  |-  ( B  u.  C )  =  ( C  u.  B
)
53, 4ineq12i 3276 . 2  |-  ( ( A  u.  C )  i^i  ( B  u.  C ) )  =  ( ( C  u.  A )  i^i  ( C  u.  B )
)
61, 2, 53eqtr4i 2283 1  |-  ( ( A  i^i  B )  u.  C )  =  ( ( A  u.  C )  i^i  ( B  u.  C )
)
Colors of variables: wff set class
Syntax hints:    = wceq 1619    u. cun 3076    i^i cin 3077
This theorem is referenced by:  undif1  3435  dfif4  3481  dfif5  3482  islimrs4  24748
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-un 3083  df-in 3085
  Copyright terms: Public domain W3C validator