MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqri Unicode version

Theorem uneqri 3405
Description: Inference from membership to union. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
uneqri.1  |-  ( ( x  e.  A  \/  x  e.  B )  <->  x  e.  C )
Assertion
Ref Expression
uneqri  |-  ( A  u.  B )  =  C
Distinct variable groups:    x, A    x, B    x, C

Proof of Theorem uneqri
StepHypRef Expression
1 elun 3404 . . 3  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
2 uneqri.1 . . 3  |-  ( ( x  e.  A  \/  x  e.  B )  <->  x  e.  C )
31, 2bitri 240 . 2  |-  ( x  e.  ( A  u.  B )  <->  x  e.  C )
43eqriv 2363 1  |-  ( A  u.  B )  =  C
Colors of variables: wff set class
Syntax hints:    <-> wb 176    \/ wo 357    = wceq 1647    e. wcel 1715    u. cun 3236
This theorem is referenced by:  unidm  3406  uncom  3407  unass  3420  dfun2  3492  undi  3504  unab  3523  un0  3567  inundif  3621
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-v 2875  df-un 3243
  Copyright terms: Public domain W3C validator