MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniabio Unicode version

Theorem uniabio 6263
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
uniabio  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
x  |  ph }  =  y )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem uniabio
StepHypRef Expression
1 abbi 2394 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  <->  { x  |  ph }  =  {
x  |  x  =  y } )
21biimpi 186 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  { x  |  ph }  =  {
x  |  x  =  y } )
3 df-sn 3647 . . . 4  |-  { y }  =  { x  |  x  =  y }
42, 3syl6eqr 2334 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  { x  |  ph }  =  {
y } )
54unieqd 3839 . 2  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
x  |  ph }  =  U. { y } )
6 vex 2792 . . 3  |-  y  e. 
_V
76unisn 3844 . 2  |-  U. {
y }  =  y
85, 7syl6eq 2332 1  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
x  |  ph }  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1527    = wceq 1623   {cab 2270   {csn 3641   U.cuni 3828
This theorem is referenced by:  iotaval  6264  iotauni  6265
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-rex 2550  df-v 2791  df-un 3158  df-sn 3647  df-pr 3648  df-uni 3829
  Copyright terms: Public domain W3C validator