MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniabio Structured version   Unicode version

Theorem uniabio 5420
Description: Part of Theorem 8.17 in [Quine] p. 56. This theorem serves as a lemma for the fundamental property of iota. (Contributed by Andrew Salmon, 11-Jul-2011.)
Assertion
Ref Expression
uniabio  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
x  |  ph }  =  y )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem uniabio
StepHypRef Expression
1 abbi 2545 . . . . 5  |-  ( A. x ( ph  <->  x  =  y )  <->  { x  |  ph }  =  {
x  |  x  =  y } )
21biimpi 187 . . . 4  |-  ( A. x ( ph  <->  x  =  y )  ->  { x  |  ph }  =  {
x  |  x  =  y } )
3 df-sn 3812 . . . 4  |-  { y }  =  { x  |  x  =  y }
42, 3syl6eqr 2485 . . 3  |-  ( A. x ( ph  <->  x  =  y )  ->  { x  |  ph }  =  {
y } )
54unieqd 4018 . 2  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
x  |  ph }  =  U. { y } )
6 vex 2951 . . 3  |-  y  e. 
_V
76unisn 4023 . 2  |-  U. {
y }  =  y
85, 7syl6eq 2483 1  |-  ( A. x ( ph  <->  x  =  y )  ->  U. {
x  |  ph }  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1549    = wceq 1652   {cab 2421   {csn 3806   U.cuni 4007
This theorem is referenced by:  iotaval  5421  iotauni  5422
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-v 2950  df-un 3317  df-sn 3812  df-pr 3813  df-uni 4008
  Copyright terms: Public domain W3C validator