MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unictb Unicode version

Theorem unictb 8165
Description: The countable union of countable sets is countable. Theorem 6Q of [Enderton] p. 159. See iunctb 8164 for indexed union version. (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
unictb  |-  ( ( A  ~<_  om  /\  A. x  e.  A  x  ~<_  om )  ->  U. A  ~<_  om )
Distinct variable group:    x, A

Proof of Theorem unictb
StepHypRef Expression
1 uniiun 3929 . 2  |-  U. A  =  U_ x  e.  A  x
2 iunctb 8164 . 2  |-  ( ( A  ~<_  om  /\  A. x  e.  A  x  ~<_  om )  ->  U_ x  e.  A  x  ~<_  om )
31, 2syl5eqbr 4030 1  |-  ( ( A  ~<_  om  /\  A. x  e.  A  x  ~<_  om )  ->  U. A  ~<_  om )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360   A.wral 2518   U.cuni 3801   U_ciun 3879   class class class wbr 3997   omcom 4628    ~<_ cdom 6829
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-inf2 7310  ax-cc 8029
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-ral 2523  df-rex 2524  df-reu 2525  df-rmo 2526  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-pss 3143  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-tp 3622  df-op 3623  df-uni 3802  df-int 3837  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-tr 4088  df-eprel 4277  df-id 4281  df-po 4286  df-so 4287  df-fr 4324  df-se 4325  df-we 4326  df-ord 4367  df-on 4368  df-lim 4369  df-suc 4370  df-om 4629  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-isom 4690  df-ov 5795  df-oprab 5796  df-mpt2 5797  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-recs 6356  df-rdg 6391  df-1o 6447  df-oadd 6451  df-er 6628  df-map 6742  df-en 6832  df-dom 6833  df-sdom 6834  df-fin 6835  df-oi 7193  df-card 7540  df-acn 7543
  Copyright terms: Public domain W3C validator