HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unierri Unicode version

Theorem unierri 22677
Description: If we approximate a chain of unitary transformations (quantum computer gates)  F,  G by other unitary transformations  S,  T, the error increases at most additively. Equation 4.73 of [NielsenChuang] p. 195. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
unierr.1  |-  F  e. 
UniOp
unierr.2  |-  G  e. 
UniOp
unierr.3  |-  S  e. 
UniOp
unierr.4  |-  T  e. 
UniOp
Assertion
Ref Expression
unierri  |-  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) )

Proof of Theorem unierri
StepHypRef Expression
1 unierr.1 . . . . . . . 8  |-  F  e. 
UniOp
2 unopbd 22588 . . . . . . . 8  |-  ( F  e.  UniOp  ->  F  e.  BndLinOp )
31, 2ax-mp 10 . . . . . . 7  |-  F  e.  BndLinOp
4 bdopf 22435 . . . . . . 7  |-  ( F  e.  BndLinOp  ->  F : ~H --> ~H )
53, 4ax-mp 10 . . . . . 6  |-  F : ~H
--> ~H
6 unierr.2 . . . . . . . 8  |-  G  e. 
UniOp
7 unopbd 22588 . . . . . . . 8  |-  ( G  e.  UniOp  ->  G  e.  BndLinOp )
86, 7ax-mp 10 . . . . . . 7  |-  G  e.  BndLinOp
9 bdopf 22435 . . . . . . 7  |-  ( G  e.  BndLinOp  ->  G : ~H --> ~H )
108, 9ax-mp 10 . . . . . 6  |-  G : ~H
--> ~H
115, 10hocofi 22339 . . . . 5  |-  ( F  o.  G ) : ~H --> ~H
12 unierr.3 . . . . . . . 8  |-  S  e. 
UniOp
13 unopbd 22588 . . . . . . . 8  |-  ( S  e.  UniOp  ->  S  e.  BndLinOp )
1412, 13ax-mp 10 . . . . . . 7  |-  S  e.  BndLinOp
15 bdopf 22435 . . . . . . 7  |-  ( S  e.  BndLinOp  ->  S : ~H --> ~H )
1614, 15ax-mp 10 . . . . . 6  |-  S : ~H
--> ~H
17 unierr.4 . . . . . . . 8  |-  T  e. 
UniOp
18 unopbd 22588 . . . . . . . 8  |-  ( T  e.  UniOp  ->  T  e.  BndLinOp )
1917, 18ax-mp 10 . . . . . . 7  |-  T  e.  BndLinOp
20 bdopf 22435 . . . . . . 7  |-  ( T  e.  BndLinOp  ->  T : ~H --> ~H )
2119, 20ax-mp 10 . . . . . 6  |-  T : ~H
--> ~H
2216, 21hocofi 22339 . . . . 5  |-  ( S  o.  T ) : ~H --> ~H
2311, 22hosubcli 22342 . . . 4  |-  ( ( F  o.  G )  -op  ( S  o.  T ) ) : ~H --> ~H
24 nmop0h 22564 . . . 4  |-  ( ( ~H  =  0H  /\  ( ( F  o.  G )  -op  ( S  o.  T )
) : ~H --> ~H )  ->  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T
) ) )  =  0 )
2523, 24mpan2 654 . . 3  |-  ( ~H  =  0H  ->  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  =  0 )
26 0le0 9823 . . . . 5  |-  0  <_  0
27 00id 8983 . . . . 5  |-  ( 0  +  0 )  =  0
2826, 27breqtrri 4050 . . . 4  |-  0  <_  ( 0  +  0 )
295, 16hosubcli 22342 . . . . . 6  |-  ( F  -op  S ) : ~H --> ~H
30 nmop0h 22564 . . . . . 6  |-  ( ( ~H  =  0H  /\  ( F  -op  S ) : ~H --> ~H )  ->  ( normop `  ( F  -op  S ) )  =  0 )
3129, 30mpan2 654 . . . . 5  |-  ( ~H  =  0H  ->  ( normop `  ( F  -op  S
) )  =  0 )
3210, 21hosubcli 22342 . . . . . 6  |-  ( G  -op  T ) : ~H --> ~H
33 nmop0h 22564 . . . . . 6  |-  ( ( ~H  =  0H  /\  ( G  -op  T ) : ~H --> ~H )  ->  ( normop `  ( G  -op  T ) )  =  0 )
3432, 33mpan2 654 . . . . 5  |-  ( ~H  =  0H  ->  ( normop `  ( G  -op  T
) )  =  0 )
3531, 34oveq12d 5838 . . . 4  |-  ( ~H  =  0H  ->  (
( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) )  =  ( 0  +  0 ) )
3628, 35syl5breqr 4061 . . 3  |-  ( ~H  =  0H  ->  0  <_  ( ( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) ) )
3725, 36eqbrtrd 4045 . 2  |-  ( ~H  =  0H  ->  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) ) )
3816, 10hocofi 22339 . . . . . 6  |-  ( S  o.  G ) : ~H --> ~H
3911, 38, 22honpncani 22400 . . . . 5  |-  ( ( ( F  o.  G
)  -op  ( S  o.  G ) )  +op  ( ( S  o.  G )  -op  ( S  o.  T )
) )  =  ( ( F  o.  G
)  -op  ( S  o.  T ) )
4039fveq2i 5489 . . . 4  |-  ( normop `  ( ( ( F  o.  G )  -op  ( S  o.  G
) )  +op  (
( S  o.  G
)  -op  ( S  o.  T ) ) ) )  =  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )
413, 8bdopcoi 22671 . . . . . . 7  |-  ( F  o.  G )  e.  BndLinOp
4214, 8bdopcoi 22671 . . . . . . 7  |-  ( S  o.  G )  e.  BndLinOp
4341, 42bdophdi 22670 . . . . . 6  |-  ( ( F  o.  G )  -op  ( S  o.  G ) )  e.  BndLinOp
4414, 19bdopcoi 22671 . . . . . . 7  |-  ( S  o.  T )  e.  BndLinOp
4542, 44bdophdi 22670 . . . . . 6  |-  ( ( S  o.  G )  -op  ( S  o.  T ) )  e.  BndLinOp
4643, 45nmoptrii 22667 . . . . 5  |-  ( normop `  ( ( ( F  o.  G )  -op  ( S  o.  G
) )  +op  (
( S  o.  G
)  -op  ( S  o.  T ) ) ) )  <_  ( ( normop `  ( ( F  o.  G )  -op  ( S  o.  G )
) )  +  (
normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )
475, 16, 10hocsubdiri 22353 . . . . . . . 8  |-  ( ( F  -op  S )  o.  G )  =  ( ( F  o.  G )  -op  ( S  o.  G )
)
4847fveq2i 5489 . . . . . . 7  |-  ( normop `  ( ( F  -op  S )  o.  G ) )  =  ( normop `  ( ( F  o.  G )  -op  ( S  o.  G )
) )
493, 14bdophdi 22670 . . . . . . . 8  |-  ( F  -op  S )  e.  BndLinOp
5049, 8nmopcoi 22668 . . . . . . 7  |-  ( normop `  ( ( F  -op  S )  o.  G ) )  <_  ( ( normop `  ( F  -op  S
) )  x.  ( normop `  G ) )
5148, 50eqbrtrri 4046 . . . . . 6  |-  ( normop `  ( ( F  o.  G )  -op  ( S  o.  G )
) )  <_  (
( normop `  ( F  -op  S ) )  x.  ( normop `  G )
)
52 bdopln 22434 . . . . . . . . . 10  |-  ( S  e.  BndLinOp  ->  S  e.  LinOp )
5314, 52ax-mp 10 . . . . . . . . 9  |-  S  e. 
LinOp
5453, 10, 21hoddii 22562 . . . . . . . 8  |-  ( S  o.  ( G  -op  T ) )  =  ( ( S  o.  G
)  -op  ( S  o.  T ) )
5554fveq2i 5489 . . . . . . 7  |-  ( normop `  ( S  o.  ( G  -op  T ) ) )  =  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T )
) )
568, 19bdophdi 22670 . . . . . . . 8  |-  ( G  -op  T )  e.  BndLinOp
5714, 56nmopcoi 22668 . . . . . . 7  |-  ( normop `  ( S  o.  ( G  -op  T ) ) )  <_  ( ( normop `  S )  x.  ( normop `  ( G  -op  T
) ) )
5855, 57eqbrtrri 4046 . . . . . 6  |-  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  S )  x.  ( normop `  ( G  -op  T ) ) )
59 nmopre 22443 . . . . . . . 8  |-  ( ( ( F  o.  G
)  -op  ( S  o.  G ) )  e.  BndLinOp 
->  ( normop `  ( ( F  o.  G )  -op  ( S  o.  G
) ) )  e.  RR )
6043, 59ax-mp 10 . . . . . . 7  |-  ( normop `  ( ( F  o.  G )  -op  ( S  o.  G )
) )  e.  RR
61 nmopre 22443 . . . . . . . 8  |-  ( ( ( S  o.  G
)  -op  ( S  o.  T ) )  e.  BndLinOp 
->  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) )  e.  RR )
6245, 61ax-mp 10 . . . . . . 7  |-  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T )
) )  e.  RR
63 nmopre 22443 . . . . . . . . 9  |-  ( ( F  -op  S )  e.  BndLinOp  ->  ( normop `  ( F  -op  S ) )  e.  RR )
6449, 63ax-mp 10 . . . . . . . 8  |-  ( normop `  ( F  -op  S
) )  e.  RR
65 nmopre 22443 . . . . . . . . 9  |-  ( G  e.  BndLinOp  ->  ( normop `  G
)  e.  RR )
668, 65ax-mp 10 . . . . . . . 8  |-  ( normop `  G )  e.  RR
6764, 66remulcli 8847 . . . . . . 7  |-  ( (
normop `  ( F  -op  S ) )  x.  ( normop `  G ) )  e.  RR
68 nmopre 22443 . . . . . . . . 9  |-  ( S  e.  BndLinOp  ->  ( normop `  S
)  e.  RR )
6914, 68ax-mp 10 . . . . . . . 8  |-  ( normop `  S )  e.  RR
70 nmopre 22443 . . . . . . . . 9  |-  ( ( G  -op  T )  e.  BndLinOp  ->  ( normop `  ( G  -op  T ) )  e.  RR )
7156, 70ax-mp 10 . . . . . . . 8  |-  ( normop `  ( G  -op  T
) )  e.  RR
7269, 71remulcli 8847 . . . . . . 7  |-  ( (
normop `  S )  x.  ( normop `  ( G  -op  T ) ) )  e.  RR
7360, 62, 67, 72le2addi 9332 . . . . . 6  |-  ( ( ( normop `  ( ( F  o.  G )  -op  ( S  o.  G
) ) )  <_ 
( ( normop `  ( F  -op  S ) )  x.  ( normop `  G
) )  /\  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  S )  x.  ( normop `  ( G  -op  T ) ) ) )  ->  ( ( normop `  ( ( F  o.  G )  -op  ( S  o.  G )
) )  +  (
normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )  <_  ( ( (
normop `  ( F  -op  S ) )  x.  ( normop `  G ) )  +  ( ( normop `  S
)  x.  ( normop `  ( G  -op  T
) ) ) ) )
7451, 58, 73mp2an 655 . . . . 5  |-  ( (
normop `  ( ( F  o.  G )  -op  ( S  o.  G
) ) )  +  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )  <_  ( ( (
normop `  ( F  -op  S ) )  x.  ( normop `  G ) )  +  ( ( normop `  S
)  x.  ( normop `  ( G  -op  T
) ) ) )
7543, 45bdophsi 22669 . . . . . . 7  |-  ( ( ( F  o.  G
)  -op  ( S  o.  G ) )  +op  ( ( S  o.  G )  -op  ( S  o.  T )
) )  e.  BndLinOp
76 nmopre 22443 . . . . . . 7  |-  ( ( ( ( F  o.  G )  -op  ( S  o.  G )
)  +op  ( ( S  o.  G )  -op  ( S  o.  T
) ) )  e.  BndLinOp 
->  ( normop `  ( (
( F  o.  G
)  -op  ( S  o.  G ) )  +op  ( ( S  o.  G )  -op  ( S  o.  T )
) ) )  e.  RR )
7775, 76ax-mp 10 . . . . . 6  |-  ( normop `  ( ( ( F  o.  G )  -op  ( S  o.  G
) )  +op  (
( S  o.  G
)  -op  ( S  o.  T ) ) ) )  e.  RR
7860, 62readdcli 8846 . . . . . 6  |-  ( (
normop `  ( ( F  o.  G )  -op  ( S  o.  G
) ) )  +  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )  e.  RR
7967, 72readdcli 8846 . . . . . 6  |-  ( ( ( normop `  ( F  -op  S ) )  x.  ( normop `  G )
)  +  ( (
normop `  S )  x.  ( normop `  ( G  -op  T ) ) ) )  e.  RR
8077, 78, 79letri 8944 . . . . 5  |-  ( ( ( normop `  ( (
( F  o.  G
)  -op  ( S  o.  G ) )  +op  ( ( S  o.  G )  -op  ( S  o.  T )
) ) )  <_ 
( ( normop `  (
( F  o.  G
)  -op  ( S  o.  G ) ) )  +  ( normop `  (
( S  o.  G
)  -op  ( S  o.  T ) ) ) )  /\  ( (
normop `  ( ( F  o.  G )  -op  ( S  o.  G
) ) )  +  ( normop `  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )  <_  ( ( (
normop `  ( F  -op  S ) )  x.  ( normop `  G ) )  +  ( ( normop `  S
)  x.  ( normop `  ( G  -op  T
) ) ) ) )  ->  ( normop `  (
( ( F  o.  G )  -op  ( S  o.  G )
)  +op  ( ( S  o.  G )  -op  ( S  o.  T
) ) ) )  <_  ( ( (
normop `  ( F  -op  S ) )  x.  ( normop `  G ) )  +  ( ( normop `  S
)  x.  ( normop `  ( G  -op  T
) ) ) ) )
8146, 74, 80mp2an 655 . . . 4  |-  ( normop `  ( ( ( F  o.  G )  -op  ( S  o.  G
) )  +op  (
( S  o.  G
)  -op  ( S  o.  T ) ) ) )  <_  ( (
( normop `  ( F  -op  S ) )  x.  ( normop `  G )
)  +  ( (
normop `  S )  x.  ( normop `  ( G  -op  T ) ) ) )
8240, 81eqbrtrri 4046 . . 3  |-  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  <_  (
( ( normop `  ( F  -op  S ) )  x.  ( normop `  G
) )  +  ( ( normop `  S )  x.  ( normop `  ( G  -op  T ) ) ) )
83 nmopun 22587 . . . . . . 7  |-  ( ( ~H  =/=  0H  /\  G  e.  UniOp )  -> 
( normop `  G )  =  1 )
846, 83mpan2 654 . . . . . 6  |-  ( ~H  =/=  0H  ->  ( normop `  G )  =  1 )
8584oveq2d 5836 . . . . 5  |-  ( ~H  =/=  0H  ->  (
( normop `  ( F  -op  S ) )  x.  ( normop `  G )
)  =  ( (
normop `  ( F  -op  S ) )  x.  1 ) )
8664recni 8845 . . . . . 6  |-  ( normop `  ( F  -op  S
) )  e.  CC
8786mulid1i 8835 . . . . 5  |-  ( (
normop `  ( F  -op  S ) )  x.  1 )  =  ( normop `  ( F  -op  S
) )
8885, 87syl6eq 2333 . . . 4  |-  ( ~H  =/=  0H  ->  (
( normop `  ( F  -op  S ) )  x.  ( normop `  G )
)  =  ( normop `  ( F  -op  S
) ) )
89 nmopun 22587 . . . . . . 7  |-  ( ( ~H  =/=  0H  /\  S  e.  UniOp )  -> 
( normop `  S )  =  1 )
9012, 89mpan2 654 . . . . . 6  |-  ( ~H  =/=  0H  ->  ( normop `  S )  =  1 )
9190oveq1d 5835 . . . . 5  |-  ( ~H  =/=  0H  ->  (
( normop `  S )  x.  ( normop `  ( G  -op  T ) ) )  =  ( 1  x.  ( normop `  ( G  -op  T ) ) ) )
9271recni 8845 . . . . . 6  |-  ( normop `  ( G  -op  T
) )  e.  CC
9392mulid2i 8836 . . . . 5  |-  ( 1  x.  ( normop `  ( G  -op  T ) ) )  =  ( normop `  ( G  -op  T
) )
9491, 93syl6eq 2333 . . . 4  |-  ( ~H  =/=  0H  ->  (
( normop `  S )  x.  ( normop `  ( G  -op  T ) ) )  =  ( normop `  ( G  -op  T ) ) )
9588, 94oveq12d 5838 . . 3  |-  ( ~H  =/=  0H  ->  (
( ( normop `  ( F  -op  S ) )  x.  ( normop `  G
) )  +  ( ( normop `  S )  x.  ( normop `  ( G  -op  T ) ) ) )  =  ( (
normop `  ( F  -op  S ) )  +  (
normop `  ( G  -op  T ) ) ) )
9682, 95syl5breq 4060 . 2  |-  ( ~H  =/=  0H  ->  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) ) )
9737, 96pm2.61ine 2524 1  |-  ( normop `  ( ( F  o.  G )  -op  ( S  o.  T )
) )  <_  (
( normop `  ( F  -op  S ) )  +  ( normop `  ( G  -op  T ) ) )
Colors of variables: wff set class
Syntax hints:    = wceq 1624    e. wcel 1685    =/= wne 2448   class class class wbr 4025    o. ccom 4693   -->wf 5218   ` cfv 5222  (class class class)co 5820   RRcr 8732   0cc0 8733   1c1 8734    + caddc 8736    x. cmul 8738    <_ cle 8864   ~Hchil 21492   0Hc0h 21508    +op chos 21511    -op chod 21513   normopcnop 21518   LinOpclo 21520   BndLinOpcbo 21521   UniOpcuo 21522
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1534  ax-5 1545  ax-17 1604  ax-9 1637  ax-8 1645  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2266  ax-rep 4133  ax-sep 4143  ax-nul 4151  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7338  ax-cc 8057  ax-cnex 8789  ax-resscn 8790  ax-1cn 8791  ax-icn 8792  ax-addcl 8793  ax-addrcl 8794  ax-mulcl 8795  ax-mulrcl 8796  ax-mulcom 8797  ax-addass 8798  ax-mulass 8799  ax-distr 8800  ax-i2m1 8801  ax-1ne0 8802  ax-1rid 8803  ax-rnegex 8804  ax-rrecex 8805  ax-cnre 8806  ax-pre-lttri 8807  ax-pre-lttrn 8808  ax-pre-ltadd 8809  ax-pre-mulgt0 8810  ax-pre-sup 8811  ax-addf 8812  ax-mulf 8813  ax-hilex 21572  ax-hfvadd 21573  ax-hvcom 21574  ax-hvass 21575  ax-hv0cl 21576  ax-hvaddid 21577  ax-hfvmul 21578  ax-hvmulid 21579  ax-hvmulass 21580  ax-hvdistr1 21581  ax-hvdistr2 21582  ax-hvmul0 21583  ax-hfi 21651  ax-his1 21654  ax-his2 21655  ax-his3 21656  ax-his4 21657  ax-hcompl 21774
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 937  df-3an 938  df-tru 1312  df-ex 1530  df-nf 1533  df-sb 1632  df-eu 2149  df-mo 2150  df-clab 2272  df-cleq 2278  df-clel 2281  df-nfc 2410  df-ne 2450  df-nel 2451  df-ral 2550  df-rex 2551  df-reu 2552  df-rmo 2553  df-rab 2554  df-v 2792  df-sbc 2994  df-csb 3084  df-dif 3157  df-un 3159  df-in 3161  df-ss 3168  df-pss 3170  df-nul 3458  df-if 3568  df-pw 3629  df-sn 3648  df-pr 3649  df-tp 3650  df-op 3651  df-uni 3830  df-int 3865  df-iun 3909  df-iin 3910  df-br 4026  df-opab 4080  df-mpt 4081  df-tr 4116  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-fun 5224  df-fn 5225  df-f 5226  df-f1 5227  df-fo 5228  df-f1o 5229  df-fv 5230  df-isom 5231  df-ov 5823  df-oprab 5824  df-mpt2 5825  df-of 6040  df-1st 6084  df-2nd 6085  df-iota 6253  df-riota 6300  df-recs 6384  df-rdg 6419  df-1o 6475  df-2o 6476  df-oadd 6479  df-omul 6480  df-er 6656  df-map 6770  df-pm 6771  df-ixp 6814  df-en 6860  df-dom 6861  df-sdom 6862  df-fin 6863  df-fi 7161  df-sup 7190  df-oi 7221  df-card 7568  df-acn 7571  df-cda 7790  df-pnf 8865  df-mnf 8866  df-xr 8867  df-ltxr 8868  df-le 8869  df-sub 9035  df-neg 9036  df-div 9420  df-nn 9743  df-2 9800  df-3 9801  df-4 9802  df-5 9803  df-6 9804  df-7 9805  df-8 9806  df-9 9807  df-10 9808  df-n0 9962  df-z 10021  df-dec 10121  df-uz 10227  df-q 10313  df-rp 10351  df-xneg 10448  df-xadd 10449  df-xmul 10450  df-ioo 10655  df-ico 10657  df-icc 10658  df-fz 10778  df-fzo 10866  df-fl 10920  df-seq 11042  df-exp 11100  df-hash 11333  df-cj 11579  df-re 11580  df-im 11581  df-sqr 11715  df-abs 11716  df-clim 11957  df-rlim 11958  df-sum 12154  df-struct 13145  df-ndx 13146  df-slot 13147  df-base 13148  df-sets 13149  df-ress 13150  df-plusg 13216  df-mulr 13217  df-starv 13218  df-sca 13219  df-vsca 13220  df-tset 13222  df-ple 13223  df-ds 13225  df-hom 13227  df-cco 13228  df-rest 13322  df-topn 13323  df-topgen 13339  df-pt 13340  df-prds 13343  df-xrs 13398  df-0g 13399  df-gsum 13400  df-qtop 13405  df-imas 13406  df-xps 13408  df-mre 13483  df-mrc 13484  df-acs 13486  df-mnd 14362  df-submnd 14411  df-mulg 14487  df-cntz 14788  df-cmn 15086  df-xmet 16368  df-met 16369  df-bl 16370  df-mopn 16371  df-cnfld 16373  df-top 16631  df-bases 16633  df-topon 16634  df-topsp 16635  df-cld 16751  df-ntr 16752  df-cls 16753  df-nei 16830  df-cn 16952  df-cnp 16953  df-lm 16954  df-haus 17038  df-tx 17252  df-hmeo 17441  df-fbas 17515  df-fg 17516  df-fil 17536  df-fm 17628  df-flim 17629  df-flf 17630  df-xms 17880  df-ms 17881  df-tms 17882  df-cfil 18676  df-cau 18677  df-cmet 18678  df-grpo 20851  df-gid 20852  df-ginv 20853  df-gdiv 20854  df-ablo 20942  df-subgo 20962  df-vc 21095  df-nv 21141  df-va 21144  df-ba 21145  df-sm 21146  df-0v 21147  df-vs 21148  df-nmcv 21149  df-ims 21150  df-dip 21267  df-ssp 21291  df-lno 21315  df-nmoo 21316  df-0o 21318  df-ph 21384  df-cbn 21435  df-hnorm 21541  df-hba 21542  df-hvsub 21544  df-hlim 21545  df-hcau 21546  df-sh 21779  df-ch 21794  df-oc 21824  df-ch0 21825  df-shs 21880  df-pjh 21967  df-hosum 22303  df-homul 22304  df-hodif 22305  df-h0op 22321  df-nmop 22412  df-lnop 22414  df-bdop 22415  df-unop 22416  df-hmop 22417
  Copyright terms: Public domain W3C validator