MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniimadomf Unicode version

Theorem uniimadomf 8353
Description: An upper bound for the cardinality of the union of an image. Theorem 10.48 of [TakeutiZaring] p. 99. This version of uniimadom 8352 uses a bound-variable hypothesis in place of a distinct variable condition. (Contributed by NM, 26-Mar-2006.)
Hypotheses
Ref Expression
uniimadomf.1  |-  F/_ x F
uniimadomf.2  |-  A  e. 
_V
uniimadomf.3  |-  B  e. 
_V
Assertion
Ref Expression
uniimadomf  |-  ( ( Fun  F  /\  A. x  e.  A  ( F `  x )  ~<_  B )  ->  U. ( F " A )  ~<_  ( A  X.  B ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    F( x)

Proof of Theorem uniimadomf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfv 1626 . . 3  |-  F/ z ( F `  x
)  ~<_  B
2 uniimadomf.1 . . . . 5  |-  F/_ x F
3 nfcv 2523 . . . . 5  |-  F/_ x
z
42, 3nffv 5675 . . . 4  |-  F/_ x
( F `  z
)
5 nfcv 2523 . . . 4  |-  F/_ x  ~<_
6 nfcv 2523 . . . 4  |-  F/_ x B
74, 5, 6nfbr 4197 . . 3  |-  F/ x
( F `  z
)  ~<_  B
8 fveq2 5668 . . . 4  |-  ( x  =  z  ->  ( F `  x )  =  ( F `  z ) )
98breq1d 4163 . . 3  |-  ( x  =  z  ->  (
( F `  x
)  ~<_  B  <->  ( F `  z )  ~<_  B ) )
101, 7, 9cbvral 2871 . 2  |-  ( A. x  e.  A  ( F `  x )  ~<_  B 
<-> 
A. z  e.  A  ( F `  z )  ~<_  B )
11 uniimadomf.2 . . 3  |-  A  e. 
_V
12 uniimadomf.3 . . 3  |-  B  e. 
_V
1311, 12uniimadom 8352 . 2  |-  ( ( Fun  F  /\  A. z  e.  A  ( F `  z )  ~<_  B )  ->  U. ( F " A )  ~<_  ( A  X.  B ) )
1410, 13sylan2b 462 1  |-  ( ( Fun  F  /\  A. x  e.  A  ( F `  x )  ~<_  B )  ->  U. ( F " A )  ~<_  ( A  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    e. wcel 1717   F/_wnfc 2510   A.wral 2649   _Vcvv 2899   U.cuni 3957   class class class wbr 4153    X. cxp 4816   "cima 4821   Fun wfun 5388   ` cfv 5394    ~<_ cdom 7043
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-ac2 8276
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-se 4483  df-we 4484  df-ord 4525  df-on 4526  df-suc 4528  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-isom 5403  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-er 6841  df-map 6956  df-en 7046  df-dom 7047  df-card 7759  df-acn 7762  df-ac 7930
  Copyright terms: Public domain W3C validator