MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniioovol Unicode version

Theorem uniioovol 19459
Description: A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 19436.) Lemma 565Ca of [Fremlin5] p. 213. (Contributed by Mario Carneiro, 26-Mar-2015.)
Hypotheses
Ref Expression
uniioombl.1  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
uniioombl.2  |-  ( ph  -> Disj  x  e.  NN ( (,) `  ( F `  x ) ) )
uniioombl.3  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
Assertion
Ref Expression
uniioovol  |-  ( ph  ->  ( vol * `  U. ran  ( (,)  o.  F ) )  =  sup ( ran  S ,  RR* ,  <  )
)
Distinct variable groups:    x, F    ph, x
Allowed substitution hint:    S( x)

Proof of Theorem uniioovol
Dummy variables  n  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniioombl.1 . . 3  |-  ( ph  ->  F : NN --> (  <_  i^i  ( RR  X.  RR ) ) )
2 ssid 3359 . . 3  |-  U. ran  ( (,)  o.  F ) 
C_  U. ran  ( (,) 
o.  F )
3 uniioombl.3 . . . 4  |-  S  =  seq  1 (  +  ,  ( ( abs 
o.  -  )  o.  F ) )
43ovollb 19363 . . 3  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  U. ran  ( (,)  o.  F
)  C_  U. ran  ( (,)  o.  F ) )  ->  ( vol * `  U. ran  ( (,) 
o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  )
)
51, 2, 4sylancl 644 . 2  |-  ( ph  ->  ( vol * `  U. ran  ( (,)  o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  ) )
61adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  NN )  ->  F : NN
--> (  <_  i^i  ( RR  X.  RR ) ) )
7 elfznn 11069 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... n )  ->  x  e.  NN )
8 eqid 2435 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  o.  F )  =  ( ( abs  o.  -  )  o.  F )
98ovolfsval 19355 . . . . . . . . . . 11  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( ( abs  o.  -  )  o.  F
) `  x )  =  ( ( 2nd `  ( F `  x
) )  -  ( 1st `  ( F `  x ) ) ) )
106, 7, 9syl2an 464 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  x )  =  ( ( 2nd `  ( F `  x
) )  -  ( 1st `  ( F `  x ) ) ) )
11 fvco3 5791 . . . . . . . . . . . . . . 15  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( (,)  o.  F
) `  x )  =  ( (,) `  ( F `  x )
) )
126, 7, 11syl2an 464 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( (,)  o.  F
) `  x )  =  ( (,) `  ( F `  x )
) )
13 inss2 3554 . . . . . . . . . . . . . . . . . 18  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR  X.  RR )
14 ffvelrn 5859 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  ( F `  x )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
156, 7, 14syl2an 464 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( F `  x )  e.  (  <_  i^i  ( RR  X.  RR ) ) )
1613, 15sseldi 3338 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( F `  x )  e.  ( RR  X.  RR ) )
17 1st2nd2 6377 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  x )  e.  ( RR  X.  RR )  ->  ( F `
 x )  = 
<. ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) >. )
1816, 17syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( F `  x )  =  <. ( 1st `  ( F `  x )
) ,  ( 2nd `  ( F `  x
) ) >. )
1918fveq2d 5723 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( (,) `  ( F `  x ) )  =  ( (,) `  <. ( 1st `  ( F `
 x ) ) ,  ( 2nd `  ( F `  x )
) >. ) )
20 df-ov 6075 . . . . . . . . . . . . . . 15  |-  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) )  =  ( (,) `  <. ( 1st `  ( F `  x ) ) ,  ( 2nd `  ( F `  x )
) >. )
2119, 20syl6eqr 2485 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( (,) `  ( F `  x ) )  =  ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) ) )
2212, 21eqtrd 2467 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( (,)  o.  F
) `  x )  =  ( ( 1st `  ( F `  x
) ) (,) ( 2nd `  ( F `  x ) ) ) )
23 ioombl 19447 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) )  e.  dom  vol
2422, 23syl6eqel 2523 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( (,)  o.  F
) `  x )  e.  dom  vol )
25 mblvol 19414 . . . . . . . . . . . 12  |-  ( ( ( (,)  o.  F
) `  x )  e.  dom  vol  ->  ( vol `  ( ( (,)  o.  F ) `  x
) )  =  ( vol * `  (
( (,)  o.  F
) `  x )
) )
2624, 25syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  =  ( vol * `  ( ( (,)  o.  F ) `  x
) ) )
2722fveq2d 5723 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol * `  ( ( (,)  o.  F ) `
 x ) )  =  ( vol * `  ( ( 1st `  ( F `  x )
) (,) ( 2nd `  ( F `  x
) ) ) ) )
28 ovolfcl 19351 . . . . . . . . . . . . 13  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  x  e.  NN )  ->  (
( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) ) )
296, 7, 28syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) ) )
30 ovolioo 19450 . . . . . . . . . . . 12  |-  ( ( ( 1st `  ( F `  x )
)  e.  RR  /\  ( 2nd `  ( F `
 x ) )  e.  RR  /\  ( 1st `  ( F `  x ) )  <_ 
( 2nd `  ( F `  x )
) )  ->  ( vol * `  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) ) )  =  ( ( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) ) )
3129, 30syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol * `  ( ( 1st `  ( F `
 x ) ) (,) ( 2nd `  ( F `  x )
) ) )  =  ( ( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) ) )
3226, 27, 313eqtrd 2471 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  =  ( ( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) ) )
3310, 32eqtr4d 2470 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( ( abs  o.  -  )  o.  F
) `  x )  =  ( vol `  (
( (,)  o.  F
) `  x )
) )
34 simpr 448 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  NN )
35 nnuz 10510 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
3634, 35syl6eleq 2525 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  n  e.  ( ZZ>= `  1 )
)
3729simp2d 970 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( 2nd `  ( F `  x ) )  e.  RR )
3829simp1d 969 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( 1st `  ( F `  x ) )  e.  RR )
3937, 38resubcld 9454 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( 2nd `  ( F `  x )
)  -  ( 1st `  ( F `  x
) ) )  e.  RR )
4032, 39eqeltrd 2509 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  e.  RR )
4140recnd 9103 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  ( vol `  ( ( (,) 
o.  F ) `  x ) )  e.  CC )
4233, 36, 41fsumser 12512 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  sum_ x  e.  ( 1 ... n
) ( vol `  (
( (,)  o.  F
) `  x )
)  =  (  seq  1 (  +  , 
( ( abs  o.  -  )  o.  F
) ) `  n
) )
433fveq1i 5720 . . . . . . . 8  |-  ( S `
 n )  =  (  seq  1 (  +  ,  ( ( abs  o.  -  )  o.  F ) ) `  n )
4442, 43syl6reqr 2486 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( S `
 n )  = 
sum_ x  e.  (
1 ... n ) ( vol `  ( ( (,)  o.  F ) `
 x ) ) )
45 fzfid 11300 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  ( 1 ... n )  e. 
Fin )
4624, 40jca 519 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  x  e.  ( 1 ... n
) )  ->  (
( ( (,)  o.  F ) `  x
)  e.  dom  vol  /\  ( vol `  (
( (,)  o.  F
) `  x )
)  e.  RR ) )
4746ralrimiva 2781 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  A. x  e.  ( 1 ... n
) ( ( ( (,)  o.  F ) `
 x )  e. 
dom  vol  /\  ( vol `  ( ( (,)  o.  F ) `  x
) )  e.  RR ) )
487ssriv 3344 . . . . . . . . 9  |-  ( 1 ... n )  C_  NN
49 uniioombl.2 . . . . . . . . . . 11  |-  ( ph  -> Disj  x  e.  NN ( (,) `  ( F `  x ) ) )
501, 11sylan 458 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  NN )  ->  ( ( (,)  o.  F ) `
 x )  =  ( (,) `  ( F `  x )
) )
5150disjeq2dv 4179 . . . . . . . . . . 11  |-  ( ph  ->  (Disj  x  e.  NN ( ( (,)  o.  F ) `  x
)  <-> Disj  x  e.  NN ( (,) `  ( F `
 x ) ) ) )
5249, 51mpbird 224 . . . . . . . . . 10  |-  ( ph  -> Disj  x  e.  NN (
( (,)  o.  F
) `  x )
)
5352adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  -> Disj  x  e.  NN ( ( (,)  o.  F ) `  x
) )
54 disjss1 4180 . . . . . . . . 9  |-  ( ( 1 ... n ) 
C_  NN  ->  (Disj  x  e.  NN ( ( (,) 
o.  F ) `  x )  -> Disj  x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) ) )
5548, 53, 54mpsyl 61 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  -> Disj  x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) )
56 volfiniun 19429 . . . . . . . 8  |-  ( ( ( 1 ... n
)  e.  Fin  /\  A. x  e.  ( 1 ... n ) ( ( ( (,)  o.  F ) `  x
)  e.  dom  vol  /\  ( vol `  (
( (,)  o.  F
) `  x )
)  e.  RR )  /\ Disj  x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )
)  ->  ( vol ` 
U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  sum_ x  e.  ( 1 ... n ) ( vol `  ( ( (,)  o.  F ) `  x
) ) )
5745, 47, 55, 56syl3anc 1184 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  sum_ x  e.  ( 1 ... n ) ( vol `  ( ( (,)  o.  F ) `  x
) ) )
5824ralrimiva 2781 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  A. x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  e.  dom  vol )
59 finiunmbl 19426 . . . . . . . . 9  |-  ( ( ( 1 ... n
)  e.  Fin  /\  A. x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )  e.  dom  vol )  ->  U_ x  e.  (
1 ... n ) ( ( (,)  o.  F
) `  x )  e.  dom  vol )
6045, 58, 59syl2anc 643 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  e.  dom  vol )
61 mblvol 19414 . . . . . . . 8  |-  ( U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )  e.  dom  vol  ->  ( vol `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  ( vol * `  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) ) )
6260, 61syl 16 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  =  ( vol * `  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) ) )
6344, 57, 623eqtr2d 2473 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( S `
 n )  =  ( vol * `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F
) `  x )
) )
64 iunss1 4096 . . . . . . . . 9  |-  ( ( 1 ... n ) 
C_  NN  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  C_  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x ) )
6548, 64mp1i 12 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  C_  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x ) )
66 ioof 10991 . . . . . . . . . . 11  |-  (,) :
( RR*  X.  RR* ) --> ~P RR
67 ressxr 9118 . . . . . . . . . . . . . 14  |-  RR  C_  RR*
68 xpss12 4972 . . . . . . . . . . . . . 14  |-  ( ( RR  C_  RR*  /\  RR  C_ 
RR* )  ->  ( RR  X.  RR )  C_  ( RR*  X.  RR* )
)
6967, 67, 68mp2an 654 . . . . . . . . . . . . 13  |-  ( RR 
X.  RR )  C_  ( RR*  X.  RR* )
7013, 69sstri 3349 . . . . . . . . . . . 12  |-  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* )
71 fss 5590 . . . . . . . . . . . 12  |-  ( ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  /\  (  <_  i^i  ( RR  X.  RR ) )  C_  ( RR*  X.  RR* ) )  ->  F : NN --> ( RR*  X. 
RR* ) )
721, 70, 71sylancl 644 . . . . . . . . . . 11  |-  ( ph  ->  F : NN --> ( RR*  X. 
RR* ) )
73 fco 5591 . . . . . . . . . . 11  |-  ( ( (,) : ( RR*  X. 
RR* ) --> ~P RR  /\  F : NN --> ( RR*  X. 
RR* ) )  -> 
( (,)  o.  F
) : NN --> ~P RR )
7466, 72, 73sylancr 645 . . . . . . . . . 10  |-  ( ph  ->  ( (,)  o.  F
) : NN --> ~P RR )
7574adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( (,) 
o.  F ) : NN --> ~P RR )
76 ffn 5582 . . . . . . . . 9  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  ( (,)  o.  F
)  Fn  NN )
77 fniunfv 5985 . . . . . . . . 9  |-  ( ( (,)  o.  F )  Fn  NN  ->  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x )  =  U. ran  ( (,)  o.  F
) )
7875, 76, 773syl 19 . . . . . . . 8  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  NN  ( ( (,) 
o.  F ) `  x )  =  U. ran  ( (,)  o.  F
) )
7965, 78sseqtrd 3376 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x )  C_  U. ran  ( (,)  o.  F ) )
80 frn 5588 . . . . . . . . . 10  |-  ( ( (,)  o.  F ) : NN --> ~P RR  ->  ran  ( (,)  o.  F )  C_  ~P RR )
8174, 80syl 16 . . . . . . . . 9  |-  ( ph  ->  ran  ( (,)  o.  F )  C_  ~P RR )
82 sspwuni 4168 . . . . . . . . 9  |-  ( ran  ( (,)  o.  F
)  C_  ~P RR  <->  U.
ran  ( (,)  o.  F )  C_  RR )
8381, 82sylib 189 . . . . . . . 8  |-  ( ph  ->  U. ran  ( (,) 
o.  F )  C_  RR )
8483adantr 452 . . . . . . 7  |-  ( (
ph  /\  n  e.  NN )  ->  U. ran  ( (,)  o.  F ) 
C_  RR )
85 ovolss 19369 . . . . . . 7  |-  ( (
U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
)  C_  U. ran  ( (,)  o.  F )  /\  U.
ran  ( (,)  o.  F )  C_  RR )  ->  ( vol * `  U_ x  e.  ( 1 ... n ) ( ( (,)  o.  F ) `  x
) )  <_  ( vol * `  U. ran  ( (,)  o.  F ) ) )
8679, 84, 85syl2anc 643 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( vol
* `  U_ x  e.  ( 1 ... n
) ( ( (,) 
o.  F ) `  x ) )  <_ 
( vol * `  U. ran  ( (,)  o.  F ) ) )
8763, 86eqbrtrd 4224 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( S `
 n )  <_ 
( vol * `  U. ran  ( (,)  o.  F ) ) )
8887ralrimiva 2781 . . . 4  |-  ( ph  ->  A. n  e.  NN  ( S `  n )  <_  ( vol * `  U. ran  ( (,) 
o.  F ) ) )
898, 3ovolsf 19357 . . . . . 6  |-  ( F : NN --> (  <_  i^i  ( RR  X.  RR ) )  ->  S : NN --> ( 0 [,) 
+oo ) )
901, 89syl 16 . . . . 5  |-  ( ph  ->  S : NN --> ( 0 [,)  +oo ) )
91 ffn 5582 . . . . 5  |-  ( S : NN --> ( 0 [,)  +oo )  ->  S  Fn  NN )
92 breq1 4207 . . . . . 6  |-  ( y  =  ( S `  n )  ->  (
y  <_  ( vol * `
 U. ran  ( (,)  o.  F ) )  <-> 
( S `  n
)  <_  ( vol * `
 U. ran  ( (,)  o.  F ) ) ) )
9392ralrn 5864 . . . . 5  |-  ( S  Fn  NN  ->  ( A. y  e.  ran  S  y  <_  ( vol * `
 U. ran  ( (,)  o.  F ) )  <->  A. n  e.  NN  ( S `  n )  <_  ( vol * `  U. ran  ( (,) 
o.  F ) ) ) )
9490, 91, 933syl 19 . . . 4  |-  ( ph  ->  ( A. y  e. 
ran  S  y  <_  ( vol * `  U. ran  ( (,)  o.  F
) )  <->  A. n  e.  NN  ( S `  n )  <_  ( vol * `  U. ran  ( (,)  o.  F ) ) ) )
9588, 94mpbird 224 . . 3  |-  ( ph  ->  A. y  e.  ran  S  y  <_  ( vol * `
 U. ran  ( (,)  o.  F ) ) )
96 frn 5588 . . . . . 6  |-  ( S : NN --> ( 0 [,)  +oo )  ->  ran  S 
C_  ( 0 [,) 
+oo ) )
971, 89, 963syl 19 . . . . 5  |-  ( ph  ->  ran  S  C_  (
0 [,)  +oo ) )
98 icossxr 10984 . . . . 5  |-  ( 0 [,)  +oo )  C_  RR*
9997, 98syl6ss 3352 . . . 4  |-  ( ph  ->  ran  S  C_  RR* )
100 ovolcl 19362 . . . . 5  |-  ( U. ran  ( (,)  o.  F
)  C_  RR  ->  ( vol * `  U. ran  ( (,)  o.  F
) )  e.  RR* )
10183, 100syl 16 . . . 4  |-  ( ph  ->  ( vol * `  U. ran  ( (,)  o.  F ) )  e. 
RR* )
102 supxrleub 10894 . . . 4  |-  ( ( ran  S  C_  RR*  /\  ( vol * `  U. ran  ( (,)  o.  F ) )  e.  RR* )  ->  ( sup ( ran 
S ,  RR* ,  <  )  <_  ( vol * `  U. ran  ( (,) 
o.  F ) )  <->  A. y  e.  ran  S  y  <_  ( vol * `
 U. ran  ( (,)  o.  F ) ) ) )
10399, 101, 102syl2anc 643 . . 3  |-  ( ph  ->  ( sup ( ran 
S ,  RR* ,  <  )  <_  ( vol * `  U. ran  ( (,) 
o.  F ) )  <->  A. y  e.  ran  S  y  <_  ( vol * `
 U. ran  ( (,)  o.  F ) ) ) )
10495, 103mpbird 224 . 2  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  <_  ( vol * `  U. ran  ( (,)  o.  F ) ) )
105 supxrcl 10882 . . . 4  |-  ( ran 
S  C_  RR*  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR* )
10699, 105syl 16 . . 3  |-  ( ph  ->  sup ( ran  S ,  RR* ,  <  )  e.  RR* )
107 xrletri3 10734 . . 3  |-  ( ( ( vol * `  U. ran  ( (,)  o.  F ) )  e. 
RR*  /\  sup ( ran  S ,  RR* ,  <  )  e.  RR* )  ->  (
( vol * `  U. ran  ( (,)  o.  F ) )  =  sup ( ran  S ,  RR* ,  <  )  <->  ( ( vol * `  U. ran  ( (,)  o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  )  /\  sup ( ran  S ,  RR* ,  <  )  <_ 
( vol * `  U. ran  ( (,)  o.  F ) ) ) ) )
108101, 106, 107syl2anc 643 . 2  |-  ( ph  ->  ( ( vol * `  U. ran  ( (,) 
o.  F ) )  =  sup ( ran 
S ,  RR* ,  <  )  <-> 
( ( vol * `  U. ran  ( (,) 
o.  F ) )  <_  sup ( ran  S ,  RR* ,  <  )  /\  sup ( ran  S ,  RR* ,  <  )  <_  ( vol * `  U. ran  ( (,)  o.  F ) ) ) ) )
1095, 104, 108mpbir2and 889 1  |-  ( ph  ->  ( vol * `  U. ran  ( (,)  o.  F ) )  =  sup ( ran  S ,  RR* ,  <  )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   <.cop 3809   U.cuni 4007   U_ciun 4085  Disj wdisj 4174   class class class wbr 4204    X. cxp 4867   dom cdm 4869   ran crn 4870    o. ccom 4873    Fn wfn 5440   -->wf 5441   ` cfv 5445  (class class class)co 6072   1stc1st 6338   2ndc2nd 6339   Fincfn 7100   supcsup 7436   RRcr 8978   0cc0 8979   1c1 8980    + caddc 8982    +oocpnf 9106   RR*cxr 9108    < clt 9109    <_ cle 9110    - cmin 9280   NNcn 9989   ZZ>=cuz 10477   (,)cioo 10905   [,)cico 10907   ...cfz 11032    seq cseq 11311   abscabs 12027   sum_csu 12467   vol
*covol 19347   volcvol 19348
This theorem is referenced by:  uniiccvol  19460  uniioombllem2  19463
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-inf2 7585  ax-cnex 9035  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-pre-sup 9057
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-disj 4175  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4837  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-of 6296  df-1st 6340  df-2nd 6341  df-riota 6540  df-recs 6624  df-rdg 6659  df-1o 6715  df-2o 6716  df-oadd 6719  df-er 6896  df-map 7011  df-pm 7012  df-en 7101  df-dom 7102  df-sdom 7103  df-fin 7104  df-fi 7407  df-sup 7437  df-oi 7468  df-card 7815  df-cda 8037  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-nn 9990  df-2 10047  df-3 10048  df-n0 10211  df-z 10272  df-uz 10478  df-q 10564  df-rp 10602  df-xneg 10699  df-xadd 10700  df-xmul 10701  df-ioo 10909  df-ico 10911  df-icc 10912  df-fz 11033  df-fzo 11124  df-fl 11190  df-seq 11312  df-exp 11371  df-hash 11607  df-cj 11892  df-re 11893  df-im 11894  df-sqr 12028  df-abs 12029  df-clim 12270  df-rlim 12271  df-sum 12468  df-rest 13638  df-topgen 13655  df-psmet 16682  df-xmet 16683  df-met 16684  df-bl 16685  df-mopn 16686  df-top 16951  df-bases 16953  df-topon 16954  df-cmp 17438  df-ovol 19349  df-vol 19350
  Copyright terms: Public domain W3C validator