MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniop Unicode version

Theorem uniop 4285
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1  |-  A  e. 
_V
opthw.2  |-  B  e. 
_V
Assertion
Ref Expression
uniop  |-  U. <. A ,  B >.  =  { A ,  B }

Proof of Theorem uniop
StepHypRef Expression
1 opthw.1 . . . 4  |-  A  e. 
_V
2 opthw.2 . . . 4  |-  B  e. 
_V
31, 2dfop 3811 . . 3  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43unieqi 3853 . 2  |-  U. <. A ,  B >.  =  U. { { A } ,  { A ,  B } }
5 snex 4232 . . 3  |-  { A }  e.  _V
6 prex 4233 . . 3  |-  { A ,  B }  e.  _V
75, 6unipr 3857 . 2  |-  U. { { A } ,  { A ,  B } }  =  ( { A }  u.  { A ,  B } )
8 snsspr1 3780 . . 3  |-  { A }  C_  { A ,  B }
9 ssequn1 3358 . . 3  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  u.  { A ,  B } )  =  { A ,  B } )
108, 9mpbi 199 . 2  |-  ( { A }  u.  { A ,  B }
)  =  { A ,  B }
114, 7, 103eqtri 2320 1  |-  U. <. A ,  B >.  =  { A ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1632    e. wcel 1696   _Vcvv 2801    u. cun 3163    C_ wss 3165   {csn 3653   {cpr 3654   <.cop 3656   U.cuni 3843
This theorem is referenced by:  uniopel  4286  elvvuni  4766  dmrnssfld  4954  dffv2  5608  rankxplim  7565
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-rex 2562  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844
  Copyright terms: Public domain W3C validator