MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniop Unicode version

Theorem uniop 4227
Description: The union of an ordered pair. Theorem 65 of [Suppes] p. 39. (Contributed by NM, 17-Aug-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypotheses
Ref Expression
opthw.1  |-  A  e. 
_V
opthw.2  |-  B  e. 
_V
Assertion
Ref Expression
uniop  |-  U. <. A ,  B >.  =  { A ,  B }

Proof of Theorem uniop
StepHypRef Expression
1 opthw.1 . . . 4  |-  A  e. 
_V
2 opthw.2 . . . 4  |-  B  e. 
_V
31, 2dfop 3755 . . 3  |-  <. A ,  B >.  =  { { A } ,  { A ,  B } }
43unieqi 3797 . 2  |-  U. <. A ,  B >.  =  U. { { A } ,  { A ,  B } }
5 snex 4174 . . 3  |-  { A }  e.  _V
6 prex 4175 . . 3  |-  { A ,  B }  e.  _V
75, 6unipr 3801 . 2  |-  U. { { A } ,  { A ,  B } }  =  ( { A }  u.  { A ,  B } )
8 snsspr1 3724 . . 3  |-  { A }  C_  { A ,  B }
9 ssequn1 3306 . . 3  |-  ( { A }  C_  { A ,  B }  <->  ( { A }  u.  { A ,  B } )  =  { A ,  B } )
108, 9mpbi 201 . 2  |-  ( { A }  u.  { A ,  B }
)  =  { A ,  B }
114, 7, 103eqtri 2280 1  |-  U. <. A ,  B >.  =  { A ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1619    e. wcel 1621   _Vcvv 2757    u. cun 3111    C_ wss 3113   {csn 3600   {cpr 3601   <.cop 3603   U.cuni 3787
This theorem is referenced by:  uniopel  4228  elvvuni  4724  dmrnssfld  4912  dffv2  5512  rankxplim  7503
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-sep 4101  ax-nul 4109  ax-pr 4172
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-rex 2522  df-v 2759  df-dif 3116  df-un 3118  df-in 3120  df-ss 3127  df-nul 3417  df-if 3526  df-sn 3606  df-pr 3607  df-op 3609  df-uni 3788
  Copyright terms: Public domain W3C validator