MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unir1 Unicode version

Theorem unir1 7418
Description: The cumulative hierarchy of sets covers the universe. Proposition 4.45 (b) to (a) of [Mendelson] p. 281. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
unir1  |-  U. ( R1 " On )  =  _V

Proof of Theorem unir1
StepHypRef Expression
1 setind 7352 . 2  |-  ( A. x ( x  C_  U. ( R1 " On )  ->  x  e.  U. ( R1 " On ) )  ->  U. ( R1 " On )  =  _V )
2 vex 2743 . . . 4  |-  x  e. 
_V
32r1elss 7411 . . 3  |-  ( x  e.  U. ( R1
" On )  <->  x  C_  U. ( R1 " On ) )
43biimpri 199 . 2  |-  ( x 
C_  U. ( R1 " On )  ->  x  e. 
U. ( R1 " On ) )
51, 4mpg 1542 1  |-  U. ( R1 " On )  =  _V
Colors of variables: wff set class
Syntax hints:    -> wi 6    = wceq 1619    e. wcel 1621   _Vcvv 2740    C_ wss 3094   U.cuni 3768   Oncon0 4329   "cima 4629   R1cr1 7367
This theorem is referenced by:  jech9.3  7419  rankwflem  7420  rankval  7421  rankr1g  7437  rankid  7438  ssrankr1  7440  rankel  7444  rankval3  7445  rankpw  7448  rankss  7454  ranksn  7459  rankuni2  7460  rankun  7461  rankpr  7462  rankop  7463  r1rankid  7464  rankeq0  7466  rankr1b  7469  dfac12a  7707  hsmex2  7992  wunexALT  8296  grutsk  8377
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-reg 7239  ax-inf2 7275
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-pss 3110  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-tp 3589  df-op 3590  df-uni 3769  df-int 3804  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-tr 4054  df-eprel 4242  df-id 4246  df-po 4251  df-so 4252  df-fr 4289  df-we 4291  df-ord 4332  df-on 4333  df-lim 4334  df-suc 4335  df-om 4594  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-recs 6321  df-rdg 6356  df-r1 7369
  Copyright terms: Public domain W3C validator