Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisnALT Unicode version

Theorem unisnALT 28756
 Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. The User manually input on a mmj2 Proof Worksheet, without labels, all steps of unisnALT 28756 except 1, 11, 15, 21, and 30. With execution of the mmj2 unification command, mmj2 could find labels for all steps except for 2, 12, 16, 22, and 31 (and the then non-existing steps 1, 11, 15, 21, and 30) . mmj2 could not find reference theorems for those five steps because the hypothesis field of each of these steps was empty and none of those steps unifies with a theorem in set.mm. Each of these five steps is a semantic variation of a theorem in set.mm and is 2-step provable. mmj2 does not have the ability to automatically generate the semantic variation in set.mm of a theorem in a mmj2 Proof Worksheet unless the theorem in the Proof Worksheet is labeled with a 1-hypothesis deduction whose hypothesis is a theorem in set.mm which unifies with the theorem in the Proof Worksheet. The stepprover.c program, which invokes mmj2, has this capability. stepprover.c automatically generated steps 1, 11, 15, 21, and 30, labeled all steps, and generated the RPN proof of unisnALT 28756. Roughly speaking, stepprover.c added to the Proof Worksheet a labeled duplicate step of each non-unifying theorem for each label in a text file, labels.txt, containing a list of labels provided by the User. Upon mmj2 unification, stepprover.c identified a label for each of the five theorems which 2-step proves it. For unisnALT 28756, the label list is a list of all 1-hypothesis propositional calculus deductions in set.mm. stepproverp.c is the same as stepprover.c except that it intermittently pauses during execution, allowing the User to observe the changes to a text file caused by the execution of particular statements of the program. (Contributed by Alan Sare, 19-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
unisnALT.1
Assertion
Ref Expression
unisnALT

Proof of Theorem unisnALT
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni 3986 . . . . . 6
21biimpi 187 . . . . 5
3 id 20 . . . . . . . . 9
4 simpl 444 . . . . . . . . 9
53, 4syl 16 . . . . . . . 8
6 simpr 448 . . . . . . . . . 10
73, 6syl 16 . . . . . . . . 9
8 elsni 3806 . . . . . . . . 9
97, 8syl 16 . . . . . . . 8
10 eleq2 2473 . . . . . . . . 9
1110biimpac 473 . . . . . . . 8
125, 9, 11syl2anc 643 . . . . . . 7
1312ax-gen 1552 . . . . . 6
14 19.23v 1910 . . . . . . 7
1514biimpi 187 . . . . . 6
1613, 15ax-mp 8 . . . . 5
17 pm3.35 571 . . . . 5
182, 16, 17sylancl 644 . . . 4
1918ax-gen 1552 . . 3
20 dfss2 3305 . . . 4
2120biimpri 198 . . 3
2219, 21ax-mp 8 . 2
23 id 20 . . . . 5
24 unisnALT.1 . . . . . 6
2524snid 3809 . . . . 5
26 elunii 3988 . . . . 5
2723, 25, 26sylancl 644 . . . 4
2827ax-gen 1552 . . 3
29 dfss2 3305 . . . 4
3029biimpri 198 . . 3
3128, 30ax-mp 8 . 2
3222, 31eqssi 3332 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359  wal 1546  wex 1547   wceq 1649   wcel 1721  cvv 2924   wss 3288  csn 3782  cuni 3983 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-v 2926  df-in 3295  df-ss 3302  df-sn 3788  df-uni 3984
 Copyright terms: Public domain W3C validator