MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unjust Unicode version

Theorem unjust 3169
Description: Soundness justification theorem for df-un 3170. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
unjust  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
Distinct variable groups:    x, A    x, B    y, A    y, B

Proof of Theorem unjust
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eleq1 2356 . . . 4  |-  ( x  =  z  ->  (
x  e.  A  <->  z  e.  A ) )
2 eleq1 2356 . . . 4  |-  ( x  =  z  ->  (
x  e.  B  <->  z  e.  B ) )
31, 2orbi12d 690 . . 3  |-  ( x  =  z  ->  (
( x  e.  A  \/  x  e.  B
)  <->  ( z  e.  A  \/  z  e.  B ) ) )
43cbvabv 2415 . 2  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { z  |  ( z  e.  A  \/  z  e.  B ) }
5 eleq1 2356 . . . 4  |-  ( z  =  y  ->  (
z  e.  A  <->  y  e.  A ) )
6 eleq1 2356 . . . 4  |-  ( z  =  y  ->  (
z  e.  B  <->  y  e.  B ) )
75, 6orbi12d 690 . . 3  |-  ( z  =  y  ->  (
( z  e.  A  \/  z  e.  B
)  <->  ( y  e.  A  \/  y  e.  B ) ) )
87cbvabv 2415 . 2  |-  { z  |  ( z  e.  A  \/  z  e.  B ) }  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
94, 8eqtri 2316 1  |-  { x  |  ( x  e.  A  \/  x  e.  B ) }  =  { y  |  ( y  e.  A  \/  y  e.  B ) }
Colors of variables: wff set class
Syntax hints:    \/ wo 357    = wceq 1632    e. wcel 1696   {cab 2282
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292
  Copyright terms: Public domain W3C validator