HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unoplin Unicode version

Theorem unoplin 22425
Description: A unitary operator is linear. Theorem in [AkhiezerGlazman] p. 72. (Contributed by NM, 22-Jan-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unoplin  |-  ( T  e.  UniOp  ->  T  e.  LinOp
)

Proof of Theorem unoplin
StepHypRef Expression
1 unopf1o 22421 . . 3  |-  ( T  e.  UniOp  ->  T : ~H
-1-1-onto-> ~H )
2 f1of 5375 . . 3  |-  ( T : ~H -1-1-onto-> ~H  ->  T : ~H
--> ~H )
31, 2syl 17 . 2  |-  ( T  e.  UniOp  ->  T : ~H
--> ~H )
4 simplll 737 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  T  e.  UniOp )
5 hvmulcl 21518 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  ~H )  ->  ( x  .h  y
)  e.  ~H )
6 hvaddcl 21517 . . . . . . . . . . 11  |-  ( ( ( x  .h  y
)  e.  ~H  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z
)  e.  ~H )
75, 6sylan 459 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
87adantll 697 . . . . . . . . 9  |-  ( ( ( T  e.  UniOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e. 
~H )
98adantr 453 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x  .h  y )  +h  z )  e.  ~H )
10 simpr 449 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  w  e.  ~H )
11 unopadj 22424 . . . . . . . 8  |-  ( ( T  e.  UniOp  /\  (
( x  .h  y
)  +h  z )  e.  ~H  /\  w  e.  ~H )  ->  (
( T `  (
( x  .h  y
)  +h  z ) )  .ih  w )  =  ( ( ( x  .h  y )  +h  z )  .ih  ( `' T `  w ) ) )
124, 9, 10, 11syl3anc 1187 . . . . . . 7  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  y )  +h  z
)  .ih  ( `' T `  w )
) )
13 simprl 735 . . . . . . . . 9  |-  ( ( T  e.  UniOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  x  e.  CC )
1413ad2antrr 709 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  x  e.  CC )
15 simprr 736 . . . . . . . . 9  |-  ( ( T  e.  UniOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  y  e.  ~H )
1615ad2antrr 709 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  y  e.  ~H )
17 simplr 734 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  z  e.  ~H )
18 cnvunop 22423 . . . . . . . . . . . 12  |-  ( T  e.  UniOp  ->  `' T  e.  UniOp )
19 unopf1o 22421 . . . . . . . . . . . 12  |-  ( `' T  e.  UniOp  ->  `' T : ~H -1-1-onto-> ~H )
20 f1of 5375 . . . . . . . . . . . 12  |-  ( `' T : ~H -1-1-onto-> ~H  ->  `' T : ~H --> ~H )
2118, 19, 203syl 20 . . . . . . . . . . 11  |-  ( T  e.  UniOp  ->  `' T : ~H --> ~H )
22 ffvelrn 5562 . . . . . . . . . . 11  |-  ( ( `' T : ~H --> ~H  /\  w  e.  ~H )  ->  ( `' T `  w )  e.  ~H )
2321, 22sylan 459 . . . . . . . . . 10  |-  ( ( T  e.  UniOp  /\  w  e.  ~H )  ->  ( `' T `  w )  e.  ~H )
2423adantlr 698 . . . . . . . . 9  |-  ( ( ( T  e.  UniOp  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( `' T `  w )  e.  ~H )
2524adantllr 702 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( `' T `  w )  e.  ~H )
26 hiassdi 21595 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  y  e.  ~H )  /\  ( z  e.  ~H  /\  ( `' T `  w )  e.  ~H ) )  ->  (
( ( x  .h  y )  +h  z
)  .ih  ( `' T `  w )
)  =  ( ( x  x.  ( y 
.ih  ( `' T `  w ) ) )  +  ( z  .ih  ( `' T `  w ) ) ) )
2714, 16, 17, 25, 26syl22anc 1188 . . . . . . 7  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( ( x  .h  y )  +h  z )  .ih  ( `' T `  w ) )  =  ( ( x  x.  ( y 
.ih  ( `' T `  w ) ) )  +  ( z  .ih  ( `' T `  w ) ) ) )
28 ffvelrn 5562 . . . . . . . . . . . 12  |-  ( ( T : ~H --> ~H  /\  y  e.  ~H )  ->  ( T `  y
)  e.  ~H )
293, 28sylan 459 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  y  e.  ~H )  ->  ( T `  y )  e.  ~H )
3029adantrl 699 . . . . . . . . . 10  |-  ( ( T  e.  UniOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  ( T `  y )  e.  ~H )
3130ad2antrr 709 . . . . . . . . 9  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  y )  e.  ~H )
32 ffvelrn 5562 . . . . . . . . . . . 12  |-  ( ( T : ~H --> ~H  /\  z  e.  ~H )  ->  ( T `  z
)  e.  ~H )
333, 32sylan 459 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  z  e.  ~H )  ->  ( T `  z )  e.  ~H )
3433adantr 453 . . . . . . . . . 10  |-  ( ( ( T  e.  UniOp  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  z )  e.  ~H )
3534adantllr 702 . . . . . . . . 9  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( T `  z )  e.  ~H )
36 hiassdi 21595 . . . . . . . . 9  |-  ( ( ( x  e.  CC  /\  ( T `  y
)  e.  ~H )  /\  ( ( T `  z )  e.  ~H  /\  w  e.  ~H )
)  ->  ( (
( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) 
.ih  w )  =  ( ( x  x.  ( ( T `  y )  .ih  w
) )  +  ( ( T `  z
)  .ih  w )
) )
3714, 31, 35, 10, 36syl22anc 1188 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( ( x  .h  ( T `
 y ) )  +h  ( T `  z ) )  .ih  w )  =  ( ( x  x.  (
( T `  y
)  .ih  w )
)  +  ( ( T `  z ) 
.ih  w ) ) )
38 unopadj 22424 . . . . . . . . . . . . 13  |-  ( ( T  e.  UniOp  /\  y  e.  ~H  /\  w  e. 
~H )  ->  (
( T `  y
)  .ih  w )  =  ( y  .ih  ( `' T `  w ) ) )
39383expa 1156 . . . . . . . . . . . 12  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 y )  .ih  w )  =  ( y  .ih  ( `' T `  w ) ) )
4039oveq2d 5773 . . . . . . . . . . 11  |-  ( ( ( T  e.  UniOp  /\  y  e.  ~H )  /\  w  e.  ~H )  ->  ( x  x.  ( ( T `  y )  .ih  w
) )  =  ( x  x.  ( y 
.ih  ( `' T `  w ) ) ) )
4140adantlrl 703 . . . . . . . . . 10  |-  ( ( ( T  e.  UniOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  w  e.  ~H )  ->  ( x  x.  ( ( T `
 y )  .ih  w ) )  =  ( x  x.  (
y  .ih  ( `' T `  w )
) ) )
4241adantlr 698 . . . . . . . . 9  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( x  x.  ( ( T `  y )  .ih  w
) )  =  ( x  x.  ( y 
.ih  ( `' T `  w ) ) ) )
43 unopadj 22424 . . . . . . . . . . 11  |-  ( ( T  e.  UniOp  /\  z  e.  ~H  /\  w  e. 
~H )  ->  (
( T `  z
)  .ih  w )  =  ( z  .ih  ( `' T `  w ) ) )
44433expa 1156 . . . . . . . . . 10  |-  ( ( ( T  e.  UniOp  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 z )  .ih  w )  =  ( z  .ih  ( `' T `  w ) ) )
4544adantllr 702 . . . . . . . . 9  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 z )  .ih  w )  =  ( z  .ih  ( `' T `  w ) ) )
4642, 45oveq12d 5775 . . . . . . . 8  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x  x.  ( ( T `
 y )  .ih  w ) )  +  ( ( T `  z )  .ih  w
) )  =  ( ( x  x.  (
y  .ih  ( `' T `  w )
) )  +  ( z  .ih  ( `' T `  w ) ) ) )
4737, 46eqtr2d 2289 . . . . . . 7  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( x  x.  ( y  .ih  ( `' T `  w ) ) )  +  ( z  .ih  ( `' T `  w ) ) )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )
)
4812, 27, 473eqtrd 2292 . . . . . 6  |-  ( ( ( ( T  e. 
UniOp  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  /\  w  e.  ~H )  ->  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )
)
4948ralrimiva 2597 . . . . 5  |-  ( ( ( T  e.  UniOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  A. w  e.  ~H  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )
)
50 ffvelrn 5562 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  ( ( x  .h  y )  +h  z
)  e.  ~H )  ->  ( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H )
517, 50sylan2 462 . . . . . . . 8  |-  ( ( T : ~H --> ~H  /\  ( ( x  e.  CC  /\  y  e. 
~H )  /\  z  e.  ~H ) )  -> 
( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H )
5251anassrs 632 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H )
53 hvmulcl 21518 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  ( T `  y )  e.  ~H )  -> 
( x  .h  ( T `  y )
)  e.  ~H )
5428, 53sylan2 462 . . . . . . . . . 10  |-  ( ( x  e.  CC  /\  ( T : ~H --> ~H  /\  y  e.  ~H )
)  ->  ( x  .h  ( T `  y
) )  e.  ~H )
5554an12s 779 . . . . . . . . 9  |-  ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e.  ~H )
)  ->  ( x  .h  ( T `  y
) )  e.  ~H )
5655adantr 453 . . . . . . . 8  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( x  .h  ( T `  y )
)  e.  ~H )
5732adantlr 698 . . . . . . . 8  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( T `  z
)  e.  ~H )
58 hvaddcl 21517 . . . . . . . 8  |-  ( ( ( x  .h  ( T `  y )
)  e.  ~H  /\  ( T `  z )  e.  ~H )  -> 
( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  e.  ~H )
5956, 57, 58syl2anc 645 . . . . . . 7  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  e.  ~H )
60 hial2eq 21610 . . . . . . 7  |-  ( ( ( T `  (
( x  .h  y
)  +h  z ) )  e.  ~H  /\  ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  e.  ~H )  ->  ( A. w  e. 
~H  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )  <->  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
6152, 59, 60syl2anc 645 . . . . . 6  |-  ( ( ( T : ~H --> ~H  /\  ( x  e.  CC  /\  y  e. 
~H ) )  /\  z  e.  ~H )  ->  ( A. w  e. 
~H  ( ( T `
 ( ( x  .h  y )  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
)  .ih  w )  <->  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
623, 61sylanl1 634 . . . . 5  |-  ( ( ( T  e.  UniOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  ( A. w  e.  ~H  (
( T `  (
( x  .h  y
)  +h  z ) )  .ih  w )  =  ( ( ( x  .h  ( T `
 y ) )  +h  ( T `  z ) )  .ih  w )  <->  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) ) )
6349, 62mpbid 203 . . . 4  |-  ( ( ( T  e.  UniOp  /\  ( x  e.  CC  /\  y  e.  ~H )
)  /\  z  e.  ~H )  ->  ( T `
 ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y
) )  +h  ( T `  z )
) )
6463ralrimiva 2597 . . 3  |-  ( ( T  e.  UniOp  /\  (
x  e.  CC  /\  y  e.  ~H )
)  ->  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z
) )  =  ( ( x  .h  ( T `  y )
)  +h  ( T `
 z ) ) )
6564ralrimivva 2606 . 2  |-  ( T  e.  UniOp  ->  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) )
66 ellnop 22363 . 2  |-  ( T  e.  LinOp 
<->  ( T : ~H --> ~H  /\  A. x  e.  CC  A. y  e. 
~H  A. z  e.  ~H  ( T `  ( ( x  .h  y )  +h  z ) )  =  ( ( x  .h  ( T `  y ) )  +h  ( T `  z
) ) ) )
673, 65, 66sylanbrc 648 1  |-  ( T  e.  UniOp  ->  T  e.  LinOp
)
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621   A.wral 2516   `'ccnv 4625   -->wf 4634   -1-1-onto->wf1o 4637   ` cfv 4638  (class class class)co 5757   CCcc 8668    + caddc 8673    x. cmul 8675   ~Hchil 21424    +h cva 21425    .h csm 21426    .ih csp 21427   LinOpclo 21452   UniOpcuo 21454
This theorem is referenced by:  unopadj2  22443  idlnop  22497  elunop2  22518  nmopun  22519  unopbd  22520
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237  ax-rep 4071  ax-sep 4081  ax-nul 4089  ax-pow 4126  ax-pr 4152  ax-un 4449  ax-resscn 8727  ax-1cn 8728  ax-icn 8729  ax-addcl 8730  ax-addrcl 8731  ax-mulcl 8732  ax-mulrcl 8733  ax-mulcom 8734  ax-addass 8735  ax-mulass 8736  ax-distr 8737  ax-i2m1 8738  ax-1ne0 8739  ax-1rid 8740  ax-rnegex 8741  ax-rrecex 8742  ax-cnre 8743  ax-pre-lttri 8744  ax-pre-lttrn 8745  ax-pre-ltadd 8746  ax-pre-mulgt0 8747  ax-hilex 21504  ax-hfvadd 21505  ax-hvcom 21506  ax-hvass 21507  ax-hv0cl 21508  ax-hvaddid 21509  ax-hfvmul 21510  ax-hvmulid 21511  ax-hvdistr2 21514  ax-hvmul0 21515  ax-hfi 21583  ax-his1 21586  ax-his2 21587  ax-his3 21588  ax-his4 21589
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2121  df-mo 2122  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-ne 2421  df-nel 2422  df-ral 2520  df-rex 2521  df-reu 2522  df-rab 2523  df-v 2742  df-sbc 2936  df-csb 3024  df-dif 3097  df-un 3099  df-in 3101  df-ss 3108  df-nul 3398  df-if 3507  df-pw 3568  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3769  df-iun 3848  df-br 3964  df-opab 4018  df-mpt 4019  df-id 4246  df-po 4251  df-so 4252  df-xp 4640  df-rel 4641  df-cnv 4642  df-co 4643  df-dm 4644  df-rn 4645  df-res 4646  df-ima 4647  df-fun 4648  df-fn 4649  df-f 4650  df-f1 4651  df-fo 4652  df-f1o 4653  df-fv 4654  df-ov 5760  df-oprab 5761  df-mpt2 5762  df-iota 6190  df-riota 6237  df-er 6593  df-map 6707  df-en 6797  df-dom 6798  df-sdom 6799  df-pnf 8802  df-mnf 8803  df-xr 8804  df-ltxr 8805  df-le 8806  df-sub 8972  df-neg 8973  df-div 9357  df-2 9737  df-cj 11514  df-re 11515  df-im 11516  df-hvsub 21476  df-lnop 22346  df-unop 22348
  Copyright terms: Public domain W3C validator