Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unopnOLD Unicode version

Theorem unopnOLD 25630
Description: The union of two open sets is open. (Moved to unopn 16481 in main set.mm and may be deleted by mathbox owner, JM. --NM 15-Oct-2012.) (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
unopnOLD  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B
)  e.  J )

Proof of Theorem unopnOLD
StepHypRef Expression
1 unopn 16481 1  |-  ( ( J  e.  Top  /\  A  e.  J  /\  B  e.  J )  ->  ( A  u.  B
)  e.  J )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ w3a 939    e. wcel 1621    u. cun 3076   Topctop 16463
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ral 2513  df-rex 2514  df-v 2729  df-un 3083  df-in 3085  df-ss 3089  df-pw 3532  df-sn 3550  df-pr 3551  df-uni 3728  df-top 16468
  Copyright terms: Public domain W3C validator