MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unss2 Unicode version

Theorem unss2 3256
Description: Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
Assertion
Ref Expression
unss2  |-  ( A 
C_  B  ->  ( C  u.  A )  C_  ( C  u.  B
) )

Proof of Theorem unss2
StepHypRef Expression
1 unss1 3254 . 2  |-  ( A 
C_  B  ->  ( A  u.  C )  C_  ( B  u.  C
) )
2 uncom 3229 . 2  |-  ( C  u.  A )  =  ( A  u.  C
)
3 uncom 3229 . 2  |-  ( C  u.  B )  =  ( B  u.  C
)
41, 2, 33sstr4g 3140 1  |-  ( A 
C_  B  ->  ( C  u.  A )  C_  ( C  u.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    u. cun 3076    C_ wss 3078
This theorem is referenced by:  unss12  3257  ord3ex  4094  xpider  6616  fin1a2lem13  7922  canthp1lem2  8155  uniioombllem3  18772  volcn  18793  dvres2lem  19092  bnj1413  27754  bnj1408  27755
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-v 2729  df-un 3083  df-in 3085  df-ss 3089
  Copyright terms: Public domain W3C validator