Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  untelirr Structured version   Unicode version

Theorem untelirr 25159
 Description: We call a class "untanged" if all its members are not members of themselves. The term originates from Isbell (see citation in dfon2 25421). Using this concept, we can avoid a lot of the uses of the Axiom of Regularity. Here, we prove a series of properties of untanged classes. First, we prove that an untangled class is not a member of itself. (Contributed by Scott Fenton, 28-Feb-2011.)
Assertion
Ref Expression
untelirr
Distinct variable group:   ,

Proof of Theorem untelirr
StepHypRef Expression
1 eleq1 2498 . . . . 5
2 eleq2 2499 . . . . 5
31, 2bitrd 246 . . . 4
43notbid 287 . . 3
54rspccv 3051 . 2
65pm2.01d 164 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wceq 1653   wcel 1726  wral 2707 This theorem is referenced by:  untsucf  25161  untangtr  25165  dfon2lem3  25414  dfon2lem7  25418  dfon2lem8  25419  dfon2lem9  25420 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-v 2960
 Copyright terms: Public domain W3C validator