Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  unv Unicode version

Theorem unv 3424
 Description: The union of a class with the universal class is the universal class. Exercise 4.10(l) of [Mendelson] p. 231. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
unv

Proof of Theorem unv
StepHypRef Expression
1 ssv 3140 . 2
2 ssun2 3281 . 2
31, 2eqssi 3137 1
 Colors of variables: wff set class Syntax hints:   wceq 1619  cvv 2740   cun 3092 This theorem is referenced by:  oev2  6455 This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2237 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-clab 2243  df-cleq 2249  df-clel 2252  df-nfc 2381  df-v 2742  df-un 3099  df-in 3101  df-ss 3108
 Copyright terms: Public domain W3C validator