MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unxpwdom Unicode version

Theorem unxpwdom 7299
Description: If a cross product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
unxpwdom  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( A  ~<_*  B  \/  A  ~<_  C ) )

Proof of Theorem unxpwdom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 reldom 6865 . . . . 5  |-  Rel  ~<_
21brrelex2i 4729 . . . 4  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( B  u.  C )  e.  _V )
3 domeng 6872 . . . 4  |-  ( ( B  u.  C )  e.  _V  ->  (
( A  X.  A
)  ~<_  ( B  u.  C )  <->  E. x
( ( A  X.  A )  ~~  x  /\  x  C_  ( B  u.  C ) ) ) )
42, 3syl 15 . . 3  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( ( A  X.  A )  ~<_  ( B  u.  C )  <->  E. x ( ( A  X.  A )  ~~  x  /\  x  C_  ( B  u.  C )
) ) )
54ibi 232 . 2  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  E. x
( ( A  X.  A )  ~~  x  /\  x  C_  ( B  u.  C ) ) )
6 simprl 732 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  X.  A )  ~~  x
)
7 indi 3416 . . . . . . . 8  |-  ( x  i^i  ( B  u.  C ) )  =  ( ( x  i^i 
B )  u.  (
x  i^i  C )
)
8 simprr 733 . . . . . . . . 9  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  x  C_  ( B  u.  C )
)
9 df-ss 3167 . . . . . . . . 9  |-  ( x 
C_  ( B  u.  C )  <->  ( x  i^i  ( B  u.  C
) )  =  x )
108, 9sylib 188 . . . . . . . 8  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i  ( B  u.  C
) )  =  x )
117, 10syl5eqr 2330 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( ( x  i^i  B )  u.  ( x  i^i  C
) )  =  x )
126, 11breqtrrd 4050 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  X.  A )  ~~  (
( x  i^i  B
)  u.  ( x  i^i  C ) ) )
13 unxpwdom2 7298 . . . . . 6  |-  ( ( A  X.  A ) 
~~  ( ( x  i^i  B )  u.  ( x  i^i  C
) )  ->  ( A  ~<_*  ( x  i^i  B
)  \/  A  ~<_  ( x  i^i  C ) ) )
1412, 13syl 15 . . . . 5  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_*  (
x  i^i  B )  \/  A  ~<_  ( x  i^i  C ) ) )
15 ssun1 3339 . . . . . . . . . 10  |-  B  C_  ( B  u.  C
)
162adantr 451 . . . . . . . . . 10  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( B  u.  C )  e.  _V )
17 ssexg 4161 . . . . . . . . . 10  |-  ( ( B  C_  ( B  u.  C )  /\  ( B  u.  C )  e.  _V )  ->  B  e.  _V )
1815, 16, 17sylancr 644 . . . . . . . . 9  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  B  e.  _V )
19 inss2 3391 . . . . . . . . 9  |-  ( x  i^i  B )  C_  B
20 ssdomg 6903 . . . . . . . . 9  |-  ( B  e.  _V  ->  (
( x  i^i  B
)  C_  B  ->  ( x  i^i  B )  ~<_  B ) )
2118, 19, 20ee10 1366 . . . . . . . 8  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i 
B )  ~<_  B )
22 domwdom 7284 . . . . . . . 8  |-  ( ( x  i^i  B )  ~<_  B  ->  ( x  i^i  B )  ~<_*  B )
2321, 22syl 15 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i 
B )  ~<_*  B )
24 wdomtr 7285 . . . . . . . 8  |-  ( ( A  ~<_*  ( x  i^i  B
)  /\  ( x  i^i  B )  ~<_*  B )  ->  A  ~<_*  B )
2524expcom 424 . . . . . . 7  |-  ( ( x  i^i  B )  ~<_*  B  ->  ( A  ~<_*  (
x  i^i  B )  ->  A  ~<_*  B ) )
2623, 25syl 15 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_*  (
x  i^i  B )  ->  A  ~<_*  B ) )
27 ssun2 3340 . . . . . . . . 9  |-  C  C_  ( B  u.  C
)
28 ssexg 4161 . . . . . . . . 9  |-  ( ( C  C_  ( B  u.  C )  /\  ( B  u.  C )  e.  _V )  ->  C  e.  _V )
2927, 16, 28sylancr 644 . . . . . . . 8  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  C  e.  _V )
30 inss2 3391 . . . . . . . 8  |-  ( x  i^i  C )  C_  C
31 ssdomg 6903 . . . . . . . 8  |-  ( C  e.  _V  ->  (
( x  i^i  C
)  C_  C  ->  ( x  i^i  C )  ~<_  C ) )
3229, 30, 31ee10 1366 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( x  i^i 
C )  ~<_  C )
33 domtr 6910 . . . . . . . 8  |-  ( ( A  ~<_  ( x  i^i 
C )  /\  (
x  i^i  C )  ~<_  C )  ->  A  ~<_  C )
3433expcom 424 . . . . . . 7  |-  ( ( x  i^i  C )  ~<_  C  ->  ( A  ~<_  ( x  i^i  C )  ->  A  ~<_  C ) )
3532, 34syl 15 . . . . . 6  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_  ( x  i^i  C )  ->  A  ~<_  C ) )
3626, 35orim12d 811 . . . . 5  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( ( A  ~<_*  ( x  i^i  B )  \/  A  ~<_  ( x  i^i  C ) )  ->  ( A  ~<_*  B  \/  A  ~<_  C )
) )
3714, 36mpd 14 . . . 4  |-  ( ( ( A  X.  A
)  ~<_  ( B  u.  C )  /\  (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) ) )  ->  ( A  ~<_*  B  \/  A  ~<_  C )
)
3837ex 423 . . 3  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( (
( A  X.  A
)  ~~  x  /\  x  C_  ( B  u.  C ) )  -> 
( A  ~<_*  B  \/  A  ~<_  C ) ) )
3938exlimdv 1665 . 2  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( E. x ( ( A  X.  A )  ~~  x  /\  x  C_  ( B  u.  C )
)  ->  ( A  ~<_*  B  \/  A  ~<_  C ) ) )
405, 39mpd 14 1  |-  ( ( A  X.  A )  ~<_  ( B  u.  C
)  ->  ( A  ~<_*  B  \/  A  ~<_  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1685   _Vcvv 2789    u. cun 3151    i^i cin 3152    C_ wss 3153   class class class wbr 4024    X. cxp 4686    ~~ cen 6856    ~<_ cdom 6857    ~<_* cwdom 7267
This theorem is referenced by:  pwcdadom  7838
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1636  ax-8 1644  ax-13 1687  ax-14 1689  ax-6 1704  ax-7 1709  ax-11 1716  ax-12 1868  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1631  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-ral 2549  df-rex 2550  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-op 3650  df-uni 3829  df-int 3864  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-id 4308  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-1st 6084  df-2nd 6085  df-er 6656  df-en 6860  df-dom 6861  df-sdom 6862  df-wdom 7269
  Copyright terms: Public domain W3C validator