MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgra1v Unicode version

Theorem usgra1v 21277
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017.)
Assertion
Ref Expression
usgra1v  |-  ( { A } USGrph  E  <->  E  =  (/) )

Proof of Theorem usgra1v
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 usgrav 21240 . . . . 5  |-  ( { A } USGrph  E  ->  ( { A }  e.  _V  /\  E  e.  _V ) )
2 isusgra 21242 . . . . . . . . 9  |-  ( ( { A }  e.  _V  /\  E  e.  _V )  ->  ( { A } USGrph  E  <->  E : dom  E -1-1-> { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 } ) )
32adantr 452 . . . . . . . 8  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( { A } USGrph  E  <->  E : dom  E -1-1-> { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 } ) )
4 eqidd 2390 . . . . . . . . . 10  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  E  =  E )
5 eqidd 2390 . . . . . . . . . 10  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  dom  E  =  dom  E )
6 pwsn 3953 . . . . . . . . . . . . . 14  |-  ~P { A }  =  { (/)
,  { A } }
76difeq1i 3406 . . . . . . . . . . . . 13  |-  ( ~P { A }  \  { (/) } )  =  ( { (/) ,  { A } }  \  { (/)
} )
8 snnzg 3866 . . . . . . . . . . . . . . . 16  |-  ( A  e.  _V  ->  { A }  =/=  (/) )
98necomd 2635 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  ->  (/)  =/=  { A } )
109adantl 453 . . . . . . . . . . . . . 14  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  (/)  =/=  { A } )
11 difprsn1 3880 . . . . . . . . . . . . . 14  |-  ( (/)  =/=  { A }  ->  ( { (/) ,  { A } }  \  { (/) } )  =  { { A } } )
1210, 11syl 16 . . . . . . . . . . . . 13  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( { (/) ,  { A } }  \  { (/) } )  =  { { A } } )
137, 12syl5eq 2433 . . . . . . . . . . . 12  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( ~P { A }  \  { (/) } )  =  { { A } } )
14 biidd 229 . . . . . . . . . . . 12  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  (
( # `  x )  =  2  <->  ( # `  x
)  =  2 ) )
1513, 14rabeqbidv 2896 . . . . . . . . . . 11  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  =  { x  e. 
{ { A } }  |  ( # `  x
)  =  2 } )
16 hashsng 11576 . . . . . . . . . . . . . . 15  |-  ( A  e.  _V  ->  ( # `
 { A }
)  =  1 )
17 1ne2 10121 . . . . . . . . . . . . . . . . 17  |-  1  =/=  2
18 neeq1 2560 . . . . . . . . . . . . . . . . 17  |-  ( (
# `  { A } )  =  1  ->  ( ( # `  { A } )  =/=  2  <->  1  =/=  2 ) )
1917, 18mpbiri 225 . . . . . . . . . . . . . . . 16  |-  ( (
# `  { A } )  =  1  ->  ( # `  { A } )  =/=  2
)
2019neneqd 2568 . . . . . . . . . . . . . . 15  |-  ( (
# `  { A } )  =  1  ->  -.  ( # `  { A } )  =  2 )
2116, 20syl 16 . . . . . . . . . . . . . 14  |-  ( A  e.  _V  ->  -.  ( # `  { A } )  =  2 )
22 2ne0 10017 . . . . . . . . . . . . . . . . . 18  |-  2  =/=  0
2322necomi 2634 . . . . . . . . . . . . . . . . 17  |-  0  =/=  2
2423a1i 11 . . . . . . . . . . . . . . . 16  |-  ( -.  A  e.  _V  ->  0  =/=  2 )
2524neneqd 2568 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  _V  ->  -.  0  =  2 )
26 snprc 3816 . . . . . . . . . . . . . . . . . . 19  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
2726biimpi 187 . . . . . . . . . . . . . . . . . 18  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
2827fveq2d 5674 . . . . . . . . . . . . . . . . 17  |-  ( -.  A  e.  _V  ->  (
# `  { A } )  =  (
# `  (/) ) )
29 hash0 11575 . . . . . . . . . . . . . . . . 17  |-  ( # `  (/) )  =  0
3028, 29syl6eq 2437 . . . . . . . . . . . . . . . 16  |-  ( -.  A  e.  _V  ->  (
# `  { A } )  =  0 )
3130eqeq1d 2397 . . . . . . . . . . . . . . 15  |-  ( -.  A  e.  _V  ->  ( ( # `  { A } )  =  2  <->  0  =  2 ) )
3225, 31mtbird 293 . . . . . . . . . . . . . 14  |-  ( -.  A  e.  _V  ->  -.  ( # `  { A } )  =  2 )
3321, 32pm2.61i 158 . . . . . . . . . . . . 13  |-  -.  ( # `
 { A }
)  =  2
34 snex 4348 . . . . . . . . . . . . . 14  |-  { A }  e.  _V
35 fveq2 5670 . . . . . . . . . . . . . . . 16  |-  ( x  =  { A }  ->  ( # `  x
)  =  ( # `  { A } ) )
3635eqeq1d 2397 . . . . . . . . . . . . . . 15  |-  ( x  =  { A }  ->  ( ( # `  x
)  =  2  <->  ( # `
 { A }
)  =  2 ) )
3736notbid 286 . . . . . . . . . . . . . 14  |-  ( x  =  { A }  ->  ( -.  ( # `  x )  =  2  <->  -.  ( # `  { A } )  =  2 ) )
3834, 37ralsn 3794 . . . . . . . . . . . . 13  |-  ( A. x  e.  { { A } }  -.  ( # `
 x )  =  2  <->  -.  ( # `  { A } )  =  2 )
3933, 38mpbir 201 . . . . . . . . . . . 12  |-  A. x  e.  { { A } }  -.  ( # `  x
)  =  2
40 rabeq0 3594 . . . . . . . . . . . 12  |-  ( { x  e.  { { A } }  |  (
# `  x )  =  2 }  =  (/)  <->  A. x  e.  { { A } }  -.  ( # `
 x )  =  2 )
4139, 40mpbir 201 . . . . . . . . . . 11  |-  { x  e.  { { A } }  |  ( # `  x
)  =  2 }  =  (/)
4215, 41syl6eq 2437 . . . . . . . . . 10  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  { x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  =  (/) )
434, 5, 42f1eq123d 5611 . . . . . . . . 9  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( E : dom  E -1-1-> {
x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  <-> 
E : dom  E -1-1-> (/) ) )
44 f1f 5581 . . . . . . . . . 10  |-  ( E : dom  E -1-1-> (/)  ->  E : dom  E --> (/) )
45 f00 5570 . . . . . . . . . . 11  |-  ( E : dom  E --> (/)  <->  ( E  =  (/)  /\  dom  E  =  (/) ) )
4645simplbi 447 . . . . . . . . . 10  |-  ( E : dom  E --> (/)  ->  E  =  (/) )
4744, 46syl 16 . . . . . . . . 9  |-  ( E : dom  E -1-1-> (/)  ->  E  =  (/) )
4843, 47syl6bi 220 . . . . . . . 8  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( E : dom  E -1-1-> {
x  e.  ( ~P { A }  \  { (/) } )  |  ( # `  x
)  =  2 }  ->  E  =  (/) ) )
493, 48sylbid 207 . . . . . . 7  |-  ( ( ( { A }  e.  _V  /\  E  e. 
_V )  /\  A  e.  _V )  ->  ( { A } USGrph  E  ->  E  =  (/) ) )
5049ex 424 . . . . . 6  |-  ( ( { A }  e.  _V  /\  E  e.  _V )  ->  ( A  e. 
_V  ->  ( { A } USGrph  E  ->  E  =  (/) ) ) )
5150com23 74 . . . . 5  |-  ( ( { A }  e.  _V  /\  E  e.  _V )  ->  ( { A } USGrph  E  ->  ( A  e.  _V  ->  E  =  (/) ) ) )
521, 51mpcom 34 . . . 4  |-  ( { A } USGrph  E  ->  ( A  e.  _V  ->  E  =  (/) ) )
5352com12 29 . . 3  |-  ( A  e.  _V  ->  ( { A } USGrph  E  ->  E  =  (/) ) )
54 usgra0 21259 . . . . 5  |-  ( { A }  e.  _V  ->  { A } USGrph  (/) )
5534, 54ax-mp 8 . . . 4  |-  { A } USGrph 
(/)
56 breq2 4159 . . . 4  |-  ( E  =  (/)  ->  ( { A } USGrph  E  <->  { A } USGrph 
(/) ) )
5755, 56mpbiri 225 . . 3  |-  ( E  =  (/)  ->  { A } USGrph  E )
5853, 57impbid1 195 . 2  |-  ( A  e.  _V  ->  ( { A } USGrph  E  <->  E  =  (/) ) )
59 breq1 4158 . . . 4  |-  ( { A }  =  (/)  ->  ( { A } USGrph  E  <->  (/) USGrph  E ) )
60 usgra0v 21260 . . . 4  |-  ( (/) USGrph  E  <-> 
E  =  (/) )
6159, 60syl6bb 253 . . 3  |-  ( { A }  =  (/)  ->  ( { A } USGrph  E  <-> 
E  =  (/) ) )
6226, 61sylbi 188 . 2  |-  ( -.  A  e.  _V  ->  ( { A } USGrph  E  <->  E  =  (/) ) )
6358, 62pm2.61i 158 1  |-  ( { A } USGrph  E  <->  E  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651   {crab 2655   _Vcvv 2901    \ cdif 3262   (/)c0 3573   ~Pcpw 3744   {csn 3759   {cpr 3760   class class class wbr 4155   dom cdm 4820   -->wf 5392   -1-1->wf1 5393   ` cfv 5396   0cc0 8925   1c1 8926   2c2 9983   #chash 11547   USGrph cusg 21234
This theorem is referenced by:  usgrafisindb1  21291  vdfrgra0  27777  vdgfrgra0  27778
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-er 6843  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-card 7761  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-2 9992  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-hash 11548  df-usgra 21236
  Copyright terms: Public domain W3C validator