MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzind4 Unicode version

Theorem uzind4 10323
Description: Induction on the set of upper integers that starts at an integer  M. The first four hypotheses give us the substitution instances we need, and the last two are the basis and the induction hypothesis. (Contributed by NM, 7-Sep-2005.)
Hypotheses
Ref Expression
uzind4.1  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
uzind4.2  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
uzind4.3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
uzind4.4  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
uzind4.5  |-  ( M  e.  ZZ  ->  ps )
uzind4.6  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
Assertion
Ref Expression
uzind4  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Distinct variable groups:    j, N    ps, j    ch, j    th, j    ta, j    ph, k    j, k, M
Allowed substitution hints:    ph( j)    ps( k)    ch( k)    th( k)    ta( k)    N( k)

Proof of Theorem uzind4
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eluzel2 10282 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 eluzelz 10285 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
3 eluzle 10287 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  <_  N )
4 breq2 4064 . . . 4  |-  ( m  =  N  ->  ( M  <_  m  <->  M  <_  N ) )
54elrab 2957 . . 3  |-  ( N  e.  { m  e.  ZZ  |  M  <_  m }  <->  ( N  e.  ZZ  /\  M  <_  N ) )
62, 3, 5sylanbrc 645 . 2  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  { m  e.  ZZ  |  M  <_  m } )
7 uzind4.1 . . 3  |-  ( j  =  M  ->  ( ph 
<->  ps ) )
8 uzind4.2 . . 3  |-  ( j  =  k  ->  ( ph 
<->  ch ) )
9 uzind4.3 . . 3  |-  ( j  =  ( k  +  1 )  ->  ( ph 
<->  th ) )
10 uzind4.4 . . 3  |-  ( j  =  N  ->  ( ph 
<->  ta ) )
11 uzind4.5 . . 3  |-  ( M  e.  ZZ  ->  ps )
12 breq2 4064 . . . . . 6  |-  ( m  =  k  ->  ( M  <_  m  <->  M  <_  k ) )
1312elrab 2957 . . . . 5  |-  ( k  e.  { m  e.  ZZ  |  M  <_  m }  <->  ( k  e.  ZZ  /\  M  <_ 
k ) )
14 eluz2 10283 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  M
)  <->  ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_ 
k ) )
1514biimpri 197 . . . . . 6  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  M  <_  k )  ->  k  e.  ( ZZ>= `  M )
)
16153expb 1152 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( k  e.  ZZ  /\  M  <_  k )
)  ->  k  e.  ( ZZ>= `  M )
)
1713, 16sylan2b 461 . . . 4  |-  ( ( M  e.  ZZ  /\  k  e.  { m  e.  ZZ  |  M  <_  m } )  ->  k  e.  ( ZZ>= `  M )
)
18 uzind4.6 . . . 4  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ch  ->  th ) )
1917, 18syl 15 . . 3  |-  ( ( M  e.  ZZ  /\  k  e.  { m  e.  ZZ  |  M  <_  m } )  ->  ( ch  ->  th ) )
207, 8, 9, 10, 11, 19uzind3 10152 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  { m  e.  ZZ  |  M  <_  m } )  ->  ta )
211, 6, 20syl2anc 642 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   {crab 2581   class class class wbr 4060   ` cfv 5292  (class class class)co 5900   1c1 8783    + caddc 8785    <_ cle 8913   ZZcz 10071   ZZ>=cuz 10277
This theorem is referenced by:  uzind4ALT  10324  uzind4s  10325  uzind4s2  10326  uzind4i  10327  uzwo  10328  uzwoOLD  10329  seqcl2  11111  seqfveq2  11115  seqshft2  11119  monoord  11123  seqsplit  11126  seqf1o  11134  seqid2  11139  seqhomo  11140  leexp2r  11206  cvgrat  12386  ruclem9  12563  dvdsfac  12630  smuval2  12720  smupvallem  12721  seq1st  12788  prmreclem4  13013  vdwlem13  13087  2expltfac  13152  1stcelcls  17243  caubl  18786  caublcls  18787  volsuplem  18965  cpnord  19337  aaliou3lem2  19776  bcmono  20569  clim2prod  24396  ntrivcvgfvn0  24404  sdclem2  25601  seqpo  25606  mettrifi  25622  incssnn0  25934  climsuselem1  26881
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-riota 6346  df-recs 6430  df-rdg 6465  df-er 6702  df-en 6907  df-dom 6908  df-sdom 6909  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-nn 9792  df-n0 10013  df-z 10072  df-uz 10278
  Copyright terms: Public domain W3C validator