MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo3 Unicode version

Theorem uzwo3 10502
Description: Well-ordering principle: any non-empty subset of upper integers has a unique least element. This generalization of uzwo2 10474 allows the lower bound  B to be any real number. See also nnwo 10475 and nnwos 10477. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
uzwo3  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem uzwo3
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 renegcl 9297 . . . 4  |-  ( B  e.  RR  ->  -u B  e.  RR )
21adantr 452 . . 3  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  -u B  e.  RR )
3 arch 10151 . . 3  |-  ( -u B  e.  RR  ->  E. n  e.  NN  -u B  <  n )
42, 3syl 16 . 2  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E. n  e.  NN  -u B  <  n )
5 simplrl 737 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  { z  e.  ZZ  |  B  <_  z } )
6 simplrl 737 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  n  e.  NN )
7 nnnegz 10218 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  -u n  e.  ZZ )
86, 7syl 16 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  e.  ZZ )
98zred 10308 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  e.  RR )
10 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  ZZ )
1110zred 10308 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  RR )
12 simpll 731 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  B  e.  RR )
136nnred 9948 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  n  e.  RR )
14 simplrr 738 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u B  <  n )
1512, 13, 14ltnegcon1d 9539 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <  B )
16 simprr 734 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  B  <_  z )
179, 12, 11, 15, 16ltletrd 9163 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <  z )
189, 11, 17ltled 9154 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <_  z )
19 eluz 10432 . . . . . . . . . . 11  |-  ( (
-u n  e.  ZZ  /\  z  e.  ZZ )  ->  ( z  e.  ( ZZ>= `  -u n )  <->  -u n  <_  z ) )
208, 10, 19syl2anc 643 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
( z  e.  (
ZZ>= `  -u n )  <->  -u n  <_ 
z ) )
2118, 20mpbird 224 . . . . . . . . 9  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  ( ZZ>= `  -u n ) )
2221expr 599 . . . . . . . 8  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  z  e.  ZZ )  ->  ( B  <_  z  ->  z  e.  ( ZZ>= `  -u n ) ) )
2322ralrimiva 2733 . . . . . . 7  |-  ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. z  e.  ZZ  ( B  <_ 
z  ->  z  e.  ( ZZ>= `  -u n ) ) )
24 rabss 3364 . . . . . . 7  |-  ( { z  e.  ZZ  |  B  <_  z }  C_  ( ZZ>= `  -u n )  <->  A. z  e.  ZZ  ( B  <_  z  -> 
z  e.  ( ZZ>= `  -u n ) ) )
2523, 24sylibr 204 . . . . . 6  |-  ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  { z  e.  ZZ  |  B  <_ 
z }  C_  ( ZZ>=
`  -u n ) )
2625adantlr 696 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  { z  e.  ZZ  |  B  <_ 
z }  C_  ( ZZ>=
`  -u n ) )
275, 26sstrd 3302 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  ( ZZ>=
`  -u n ) )
28 simplrr 738 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  =/=  (/) )
29 infmssuzcl 10492 . . . 4  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  A  =/=  (/) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A
)
3027, 28, 29syl2anc 643 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A
)
31 infmssuzle 10491 . . . . 5  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  y  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  y
)
3227, 31sylan 458 . . . 4  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  y  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  y
)
3332ralrimiva 2733 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_  y
)
3430adantr 452 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A )
35 simprr 734 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A. y  e.  A  x  <_  y )
36 breq2 4158 . . . . . . . 8  |-  ( y  =  sup ( A ,  RR ,  `'  <  )  ->  ( x  <_  y  <->  x  <_  sup ( A ,  RR ,  `'  <  ) ) )
3736rspcv 2992 . . . . . . 7  |-  ( sup ( A ,  RR ,  `'  <  )  e.  A  ->  ( A. y  e.  A  x  <_  y  ->  x  <_  sup ( A ,  RR ,  `'  <  ) ) )
3834, 35, 37sylc 58 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  <_  sup ( A ,  RR ,  `'  <  ) )
3927adantr 452 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A  C_  ( ZZ>= `  -u n
) )
40 simprl 733 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  e.  A )
41 infmssuzle 10491 . . . . . . 7  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  x  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  x
)
4239, 40, 41syl2anc 643 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  <_  x )
43 uzssz 10438 . . . . . . . . . . 11  |-  ( ZZ>= `  -u n )  C_  ZZ
44 zssre 10222 . . . . . . . . . . 11  |-  ZZ  C_  RR
4543, 44sstri 3301 . . . . . . . . . 10  |-  ( ZZ>= `  -u n )  C_  RR
4627, 45syl6ss 3304 . . . . . . . . 9  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  RR )
4746adantr 452 . . . . . . . 8  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A  C_  RR )
4847, 40sseldd 3293 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  e.  RR )
4946, 30sseldd 3293 . . . . . . . 8  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
5049adantr 452 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
5148, 50letri3d 9148 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  -> 
( x  =  sup ( A ,  RR ,  `'  <  )  <->  ( x  <_  sup ( A ,  RR ,  `'  <  )  /\  sup ( A ,  RR ,  `'  <  )  <_  x )
) )
5238, 42, 51mpbir2and 889 . . . . 5  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  =  sup ( A ,  RR ,  `'  <  ) )
5352expr 599 . . . 4  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  x  e.  A )  ->  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )
5453ralrimiva 2733 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. x  e.  A  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )
55 breq1 4157 . . . . 5  |-  ( x  =  sup ( A ,  RR ,  `'  <  )  ->  ( x  <_  y  <->  sup ( A ,  RR ,  `'  <  )  <_  y ) )
5655ralbidv 2670 . . . 4  |-  ( x  =  sup ( A ,  RR ,  `'  <  )  ->  ( A. y  e.  A  x  <_  y  <->  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_ 
y ) )
5756eqreu 3070 . . 3  |-  ( ( sup ( A ,  RR ,  `'  <  )  e.  A  /\  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_  y  /\  A. x  e.  A  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
5830, 33, 54, 57syl3anc 1184 . 2  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
594, 58rexlimddv 2778 1  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    =/= wne 2551   A.wral 2650   E.wrex 2651   E!wreu 2652   {crab 2654    C_ wss 3264   (/)c0 3572   class class class wbr 4154   `'ccnv 4818   ` cfv 5395   supcsup 7381   RRcr 8923    < clt 9054    <_ cle 9055   -ucneg 9225   NNcn 9933   ZZcz 10215   ZZ>=cuz 10421
This theorem is referenced by:  zmin  10503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642  ax-cnex 8980  ax-resscn 8981  ax-1cn 8982  ax-icn 8983  ax-addcl 8984  ax-addrcl 8985  ax-mulcl 8986  ax-mulrcl 8987  ax-mulcom 8988  ax-addass 8989  ax-mulass 8990  ax-distr 8991  ax-i2m1 8992  ax-1ne0 8993  ax-1rid 8994  ax-rnegex 8995  ax-rrecex 8996  ax-cnre 8997  ax-pre-lttri 8998  ax-pre-lttrn 8999  ax-pre-ltadd 9000  ax-pre-mulgt0 9001  ax-pre-sup 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-nel 2554  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-riota 6486  df-recs 6570  df-rdg 6605  df-er 6842  df-en 7047  df-dom 7048  df-sdom 7049  df-sup 7382  df-pnf 9056  df-mnf 9057  df-xr 9058  df-ltxr 9059  df-le 9060  df-sub 9226  df-neg 9227  df-nn 9934  df-n0 10155  df-z 10216  df-uz 10422
  Copyright terms: Public domain W3C validator