MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwo3 Unicode version

Theorem uzwo3 10306
Description: Well-ordering principle: any non-empty subset of upper integers has a unique least element. This generalization of uzwo2 10278 allows the lower bound  B to be any real number. See also nnwo 10279 and nnwos 10281. (Contributed by NM, 12-Nov-2004.) (Proof shortened by Mario Carneiro, 2-Oct-2015.)
Assertion
Ref Expression
uzwo3  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
Distinct variable groups:    x, y,
z, A    x, B, y, z

Proof of Theorem uzwo3
StepHypRef Expression
1 renegcl 9105 . . . 4  |-  ( B  e.  RR  ->  -u B  e.  RR )
21adantr 453 . . 3  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  -u B  e.  RR )
3 arch 9957 . . 3  |-  ( -u B  e.  RR  ->  E. n  e.  NN  -u B  <  n )
42, 3syl 17 . 2  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E. n  e.  NN  -u B  <  n )
5 simplrl 739 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  { z  e.  ZZ  |  B  <_  z } )
6 simplrl 739 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  n  e.  NN )
7 nnnegz 10022 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  -u n  e.  ZZ )
86, 7syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  e.  ZZ )
98zred 10112 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  e.  RR )
10 simprl 735 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  ZZ )
1110zred 10112 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  RR )
12 simpll 733 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  B  e.  RR )
136nnred 9756 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  n  e.  RR )
14 simplrr 740 . . . . . . . . . . . . . . 15  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u B  <  n )
1512, 13, 14ltnegcon1d 9347 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <  B )
16 simprr 736 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  B  <_  z )
179, 12, 11, 15, 16ltletrd 8971 . . . . . . . . . . . . 13  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <  z )
189, 11, 17ltled 8962 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  ->  -u n  <_  z )
19 eluz 10236 . . . . . . . . . . . . 13  |-  ( (
-u n  e.  ZZ  /\  z  e.  ZZ )  ->  ( z  e.  ( ZZ>= `  -u n )  <->  -u n  <_  z ) )
208, 10, 19syl2anc 645 . . . . . . . . . . . 12  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
( z  e.  (
ZZ>= `  -u n )  <->  -u n  <_ 
z ) )
2118, 20mpbird 225 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( z  e.  ZZ  /\  B  <_  z ) )  -> 
z  e.  ( ZZ>= `  -u n ) )
2221expr 601 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  z  e.  ZZ )  ->  ( B  <_  z  ->  z  e.  ( ZZ>= `  -u n ) ) )
2322ralrimiva 2627 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. z  e.  ZZ  ( B  <_ 
z  ->  z  e.  ( ZZ>= `  -u n ) ) )
24 rabss 3251 . . . . . . . . 9  |-  ( { z  e.  ZZ  |  B  <_  z }  C_  ( ZZ>= `  -u n )  <->  A. z  e.  ZZ  ( B  <_  z  -> 
z  e.  ( ZZ>= `  -u n ) ) )
2523, 24sylibr 205 . . . . . . . 8  |-  ( ( B  e.  RR  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  { z  e.  ZZ  |  B  <_ 
z }  C_  ( ZZ>=
`  -u n ) )
2625adantlr 698 . . . . . . 7  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  { z  e.  ZZ  |  B  <_ 
z }  C_  ( ZZ>=
`  -u n ) )
275, 26sstrd 3190 . . . . . 6  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  ( ZZ>=
`  -u n ) )
28 simplrr 740 . . . . . 6  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  =/=  (/) )
29 infmssuzcl 10296 . . . . . 6  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  A  =/=  (/) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A
)
3027, 28, 29syl2anc 645 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A
)
31 infmssuzle 10295 . . . . . . 7  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  y  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  y
)
3227, 31sylan 459 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  y  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  y
)
3332ralrimiva 2627 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_  y
)
3430adantr 453 . . . . . . . . 9  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  A )
35 simprr 736 . . . . . . . . 9  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A. y  e.  A  x  <_  y )
36 breq2 4028 . . . . . . . . . 10  |-  ( y  =  sup ( A ,  RR ,  `'  <  )  ->  ( x  <_  y  <->  x  <_  sup ( A ,  RR ,  `'  <  ) ) )
3736rspcv 2881 . . . . . . . . 9  |-  ( sup ( A ,  RR ,  `'  <  )  e.  A  ->  ( A. y  e.  A  x  <_  y  ->  x  <_  sup ( A ,  RR ,  `'  <  ) ) )
3834, 35, 37sylc 58 . . . . . . . 8  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  <_  sup ( A ,  RR ,  `'  <  ) )
3927adantr 453 . . . . . . . . 9  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A  C_  ( ZZ>= `  -u n
) )
40 simprl 735 . . . . . . . . 9  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  e.  A )
41 infmssuzle 10295 . . . . . . . . 9  |-  ( ( A  C_  ( ZZ>= `  -u n )  /\  x  e.  A )  ->  sup ( A ,  RR ,  `'  <  )  <_  x
)
4239, 40, 41syl2anc 645 . . . . . . . 8  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  <_  x )
43 uzssz 10242 . . . . . . . . . . . . 13  |-  ( ZZ>= `  -u n )  C_  ZZ
44 zssre 10026 . . . . . . . . . . . . 13  |-  ZZ  C_  RR
4543, 44sstri 3189 . . . . . . . . . . . 12  |-  ( ZZ>= `  -u n )  C_  RR
4627, 45syl6ss 3192 . . . . . . . . . . 11  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A  C_  RR )
4746adantr 453 . . . . . . . . . 10  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  A  C_  RR )
4847, 40sseldd 3182 . . . . . . . . 9  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  e.  RR )
4946, 30sseldd 3182 . . . . . . . . . 10  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
5049adantr 453 . . . . . . . . 9  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  sup ( A ,  RR ,  `'  <  )  e.  RR )
5148, 50letri3d 8956 . . . . . . . 8  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  -> 
( x  =  sup ( A ,  RR ,  `'  <  )  <->  ( x  <_  sup ( A ,  RR ,  `'  <  )  /\  sup ( A ,  RR ,  `'  <  )  <_  x )
) )
5238, 42, 51mpbir2and 893 . . . . . . 7  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  ( x  e.  A  /\  A. y  e.  A  x  <_  y ) )  ->  x  =  sup ( A ,  RR ,  `'  <  ) )
5352expr 601 . . . . . 6  |-  ( ( ( ( B  e.  RR  /\  ( A 
C_  { z  e.  ZZ  |  B  <_ 
z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  /\  x  e.  A )  ->  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )
5453ralrimiva 2627 . . . . 5  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  A. x  e.  A  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )
55 breq1 4027 . . . . . . 7  |-  ( x  =  sup ( A ,  RR ,  `'  <  )  ->  ( x  <_  y  <->  sup ( A ,  RR ,  `'  <  )  <_  y ) )
5655ralbidv 2564 . . . . . 6  |-  ( x  =  sup ( A ,  RR ,  `'  <  )  ->  ( A. y  e.  A  x  <_  y  <->  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_ 
y ) )
5756eqreu 2958 . . . . 5  |-  ( ( sup ( A ,  RR ,  `'  <  )  e.  A  /\  A. y  e.  A  sup ( A ,  RR ,  `'  <  )  <_  y  /\  A. x  e.  A  ( A. y  e.  A  x  <_  y  ->  x  =  sup ( A ,  RR ,  `'  <  ) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
5830, 33, 54, 57syl3anc 1187 . . . 4  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  ( n  e.  NN  /\  -u B  <  n ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
5958expr 601 . . 3  |-  ( ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  /\  n  e.  NN )  ->  ( -u B  < 
n  ->  E! x  e.  A  A. y  e.  A  x  <_  y ) )
6059rexlimdva 2668 . 2  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  -> 
( E. n  e.  NN  -u B  <  n  ->  E! x  e.  A  A. y  e.  A  x  <_  y ) )
614, 60mpd 16 1  |-  ( ( B  e.  RR  /\  ( A  C_  { z  e.  ZZ  |  B  <_  z }  /\  A  =/=  (/) ) )  ->  E! x  e.  A  A. y  e.  A  x  <_  y )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1628    e. wcel 1688    =/= wne 2447   A.wral 2544   E.wrex 2545   E!wreu 2546   {crab 2548    C_ wss 3153   (/)c0 3456   class class class wbr 4024   `'ccnv 4687   ` cfv 5221   supcsup 7188   RRcr 8731    < clt 8862    <_ cle 8863   -ucneg 9033   NNcn 9741   ZZcz 10019   ZZ>=cuz 10225
This theorem is referenced by:  zmin  10307
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-gen 1538  ax-5 1549  ax-17 1608  ax-9 1641  ax-8 1648  ax-13 1690  ax-14 1692  ax-6 1707  ax-7 1712  ax-11 1719  ax-12 1869  ax-ext 2265  ax-sep 4142  ax-nul 4150  ax-pow 4187  ax-pr 4213  ax-un 4511  ax-cnex 8788  ax-resscn 8789  ax-1cn 8790  ax-icn 8791  ax-addcl 8792  ax-addrcl 8793  ax-mulcl 8794  ax-mulrcl 8795  ax-mulcom 8796  ax-addass 8797  ax-mulass 8798  ax-distr 8799  ax-i2m1 8800  ax-1ne0 8801  ax-1rid 8802  ax-rnegex 8803  ax-rrecex 8804  ax-cnre 8805  ax-pre-lttri 8806  ax-pre-lttrn 8807  ax-pre-ltadd 8808  ax-pre-mulgt0 8809  ax-pre-sup 8810
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1534  df-nf 1537  df-sb 1636  df-eu 2148  df-mo 2149  df-clab 2271  df-cleq 2277  df-clel 2280  df-nfc 2409  df-ne 2449  df-nel 2450  df-ral 2549  df-rex 2550  df-reu 2551  df-rmo 2552  df-rab 2553  df-v 2791  df-sbc 2993  df-csb 3083  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pss 3169  df-nul 3457  df-if 3567  df-pw 3628  df-sn 3647  df-pr 3648  df-tp 3649  df-op 3650  df-uni 3829  df-iun 3908  df-br 4025  df-opab 4079  df-mpt 4080  df-tr 4115  df-eprel 4304  df-id 4308  df-po 4313  df-so 4314  df-fr 4351  df-we 4353  df-ord 4394  df-on 4395  df-lim 4396  df-suc 4397  df-om 4656  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-fun 5223  df-fn 5224  df-f 5225  df-f1 5226  df-fo 5227  df-f1o 5228  df-fv 5229  df-ov 5822  df-oprab 5823  df-mpt2 5824  df-iota 6252  df-riota 6299  df-recs 6383  df-rdg 6418  df-er 6655  df-en 6859  df-dom 6860  df-sdom 6861  df-sup 7189  df-pnf 8864  df-mnf 8865  df-xr 8866  df-ltxr 8867  df-le 8868  df-sub 9034  df-neg 9035  df-nn 9742  df-n0 9961  df-z 10020  df-uz 10226
  Copyright terms: Public domain W3C validator