MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzwoOLD Structured version   Unicode version

Theorem uzwoOLD 10540
Description: Well-ordering principle: any non-empty subset of the upper integers has the least element. (Contributed by NM, 8-Oct-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
uzwoOLD  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  S  =  (/) )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
Distinct variable group:    j, k, S
Allowed substitution hints:    M( j, k)

Proof of Theorem uzwoOLD
Dummy variables  t  h  n  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4215 . . . . . . . . . . . 12  |-  ( h  =  M  ->  (
h  <_  t  <->  M  <_  t ) )
21ralbidv 2725 . . . . . . . . . . 11  |-  ( h  =  M  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  M  <_  t ) )
32imbi2d 308 . . . . . . . . . 10  |-  ( h  =  M  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  M  <_  t ) ) )
4 breq1 4215 . . . . . . . . . . . 12  |-  ( h  =  m  ->  (
h  <_  t  <->  m  <_  t ) )
54ralbidv 2725 . . . . . . . . . . 11  |-  ( h  =  m  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  m  <_  t ) )
65imbi2d 308 . . . . . . . . . 10  |-  ( h  =  m  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  m  <_  t ) ) )
7 breq1 4215 . . . . . . . . . . . 12  |-  ( h  =  ( m  + 
1 )  ->  (
h  <_  t  <->  ( m  +  1 )  <_ 
t ) )
87ralbidv 2725 . . . . . . . . . . 11  |-  ( h  =  ( m  + 
1 )  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  ( m  +  1 )  <_ 
t ) )
98imbi2d 308 . . . . . . . . . 10  |-  ( h  =  ( m  + 
1 )  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
10 breq1 4215 . . . . . . . . . . . 12  |-  ( h  =  n  ->  (
h  <_  t  <->  n  <_  t ) )
1110ralbidv 2725 . . . . . . . . . . 11  |-  ( h  =  n  ->  ( A. t  e.  S  h  <_  t  <->  A. t  e.  S  n  <_  t ) )
1211imbi2d 308 . . . . . . . . . 10  |-  ( h  =  n  ->  (
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  h  <_  t )  <->  ( ( S 
C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  n  <_  t ) ) )
13 ssel 3342 . . . . . . . . . . . . . 14  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( t  e.  S  ->  t  e.  ( ZZ>= `  M )
) )
14 eluzle 10498 . . . . . . . . . . . . . 14  |-  ( t  e.  ( ZZ>= `  M
)  ->  M  <_  t )
1513, 14syl6 31 . . . . . . . . . . . . 13  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( t  e.  S  ->  M  <_ 
t ) )
1615ralrimiv 2788 . . . . . . . . . . . 12  |-  ( S 
C_  ( ZZ>= `  M
)  ->  A. t  e.  S  M  <_  t )
1716adantr 452 . . . . . . . . . . 11  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  M  <_  t )
1817a1i 11 . . . . . . . . . 10  |-  ( M  e.  ZZ  ->  (
( S  C_  ( ZZ>=
`  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  M  <_  t ) )
19 uzssz 10505 . . . . . . . . . . . . 13  |-  ( ZZ>= `  M )  C_  ZZ
20 sstr 3356 . . . . . . . . . . . . 13  |-  ( ( S  C_  ( ZZ>= `  M )  /\  ( ZZ>=
`  M )  C_  ZZ )  ->  S  C_  ZZ )
2119, 20mpan2 653 . . . . . . . . . . . 12  |-  ( S 
C_  ( ZZ>= `  M
)  ->  S  C_  ZZ )
22 eluzelz 10496 . . . . . . . . . . . . 13  |-  ( m  e.  ( ZZ>= `  M
)  ->  m  e.  ZZ )
23 breq1 4215 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  m  ->  (
j  <_  t  <->  m  <_  t ) )
2423ralbidv 2725 . . . . . . . . . . . . . . . . . . 19  |-  ( j  =  m  ->  ( A. t  e.  S  j  <_  t  <->  A. t  e.  S  m  <_  t ) )
2524rspcev 3052 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  S  /\  A. t  e.  S  m  <_  t )  ->  E. j  e.  S  A. t  e.  S  j  <_  t )
2625expcom 425 . . . . . . . . . . . . . . . . 17  |-  ( A. t  e.  S  m  <_  t  ->  ( m  e.  S  ->  E. j  e.  S  A. t  e.  S  j  <_  t ) )
2726con3rr3 130 . . . . . . . . . . . . . . . 16  |-  ( -. 
E. j  e.  S  A. t  e.  S  j  <_  t  ->  ( A. t  e.  S  m  <_  t  ->  -.  m  e.  S )
)
28 ssel2 3343 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( S  C_  ZZ  /\  t  e.  S )  ->  t  e.  ZZ )
29 zre 10286 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( m  e.  ZZ  ->  m  e.  RR )
30 zre 10286 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( t  e.  ZZ  ->  t  e.  RR )
31 letri3 9160 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( m  e.  RR  /\  t  e.  RR )  ->  ( m  =  t  <-> 
( m  <_  t  /\  t  <_  m ) ) )
3229, 30, 31syl2an 464 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( m  =  t  <-> 
( m  <_  t  /\  t  <_  m ) ) )
33 zleltp1 10326 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( t  e.  ZZ  /\  m  e.  ZZ )  ->  ( t  <_  m  <->  t  <  ( m  + 
1 ) ) )
34 peano2re 9239 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( m  e.  RR  ->  (
m  +  1 )  e.  RR )
3529, 34syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( m  e.  ZZ  ->  (
m  +  1 )  e.  RR )
36 ltnle 9155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( t  e.  RR  /\  ( m  +  1
)  e.  RR )  ->  ( t  < 
( m  +  1 )  <->  -.  ( m  +  1 )  <_ 
t ) )
3730, 35, 36syl2an 464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( t  e.  ZZ  /\  m  e.  ZZ )  ->  ( t  <  (
m  +  1 )  <->  -.  ( m  +  1 )  <_  t )
)
3833, 37bitrd 245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( t  e.  ZZ  /\  m  e.  ZZ )  ->  ( t  <_  m  <->  -.  ( m  +  1 )  <_  t )
)
3938ancoms 440 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( t  <_  m  <->  -.  ( m  +  1 )  <_  t )
)
4039anbi2d 685 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( ( m  <_ 
t  /\  t  <_  m )  <->  ( m  <_ 
t  /\  -.  (
m  +  1 )  <_  t ) ) )
4132, 40bitrd 245 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( m  e.  ZZ  /\  t  e.  ZZ )  ->  ( m  =  t  <-> 
( m  <_  t  /\  -.  ( m  + 
1 )  <_  t
) ) )
4228, 41sylan2 461 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  =  t  <->  ( m  <_ 
t  /\  -.  (
m  +  1 )  <_  t ) ) )
43 eleq1a 2505 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( t  e.  S  ->  (
m  =  t  ->  m  e.  S )
)
4443ad2antll 710 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  =  t  ->  m  e.  S ) )
4542, 44sylbird 227 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( (
m  <_  t  /\  -.  ( m  +  1 )  <_  t )  ->  m  e.  S ) )
4645exp3a 426 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  <_  t  ->  ( -.  ( m  +  1
)  <_  t  ->  m  e.  S ) ) )
47 con1 122 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( -.  ( m  + 
1 )  <_  t  ->  m  e.  S )  ->  ( -.  m  e.  S  ->  ( m  +  1 )  <_ 
t ) )
4846, 47syl6 31 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( m  <_  t  ->  ( -.  m  e.  S  ->  ( m  +  1 )  <_  t ) ) )
4948com23 74 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( m  e.  ZZ  /\  ( S  C_  ZZ  /\  t  e.  S )
)  ->  ( -.  m  e.  S  ->  ( m  <_  t  ->  ( m  +  1 )  <_  t ) ) )
5049exp32 589 . . . . . . . . . . . . . . . . . . . 20  |-  ( m  e.  ZZ  ->  ( S  C_  ZZ  ->  (
t  e.  S  -> 
( -.  m  e.  S  ->  ( m  <_  t  ->  ( m  +  1 )  <_ 
t ) ) ) ) )
5150com34 79 . . . . . . . . . . . . . . . . . . 19  |-  ( m  e.  ZZ  ->  ( S  C_  ZZ  ->  ( -.  m  e.  S  ->  ( t  e.  S  ->  ( m  <_  t  ->  ( m  +  1 )  <_  t )
) ) ) )
5251imp41 577 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  m  e.  S )  /\  t  e.  S )  ->  (
m  <_  t  ->  ( m  +  1 )  <_  t ) )
5352ralimdva 2784 . . . . . . . . . . . . . . . . 17  |-  ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  m  e.  S
)  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) )
5453ex 424 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  ZZ  /\  S  C_  ZZ )  -> 
( -.  m  e.  S  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
5527, 54sylan9r 640 . . . . . . . . . . . . . . 15  |-  ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  ( A. t  e.  S  m  <_  t  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
5655pm2.43d 46 . . . . . . . . . . . . . 14  |-  ( ( ( m  e.  ZZ  /\  S  C_  ZZ )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) )
5756expl 602 . . . . . . . . . . . . 13  |-  ( m  e.  ZZ  ->  (
( S  C_  ZZ  /\ 
-.  E. j  e.  S  A. t  e.  S  j  <_  t )  -> 
( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1
)  <_  t )
) )
5822, 57syl 16 . . . . . . . . . . . 12  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ZZ  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
5921, 58sylani 636 . . . . . . . . . . 11  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  ( A. t  e.  S  m  <_  t  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
6059a2d 24 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  M
)  ->  ( (
( S  C_  ( ZZ>=
`  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  m  <_  t )  -> 
( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t
)  ->  A. t  e.  S  ( m  +  1 )  <_ 
t ) ) )
613, 6, 9, 12, 18, 60uzind4 10534 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  A. t  e.  S  n  <_  t ) )
62 breq1 4215 . . . . . . . . . . . . . 14  |-  ( j  =  n  ->  (
j  <_  t  <->  n  <_  t ) )
6362ralbidv 2725 . . . . . . . . . . . . 13  |-  ( j  =  n  ->  ( A. t  e.  S  j  <_  t  <->  A. t  e.  S  n  <_  t ) )
6463rspcev 3052 . . . . . . . . . . . 12  |-  ( ( n  e.  S  /\  A. t  e.  S  n  <_  t )  ->  E. j  e.  S  A. t  e.  S  j  <_  t )
6564expcom 425 . . . . . . . . . . 11  |-  ( A. t  e.  S  n  <_  t  ->  ( n  e.  S  ->  E. j  e.  S  A. t  e.  S  j  <_  t ) )
6665con3rr3 130 . . . . . . . . . 10  |-  ( -. 
E. j  e.  S  A. t  e.  S  j  <_  t  ->  ( A. t  e.  S  n  <_  t  ->  -.  n  e.  S )
)
6766adantl 453 . . . . . . . . 9  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  ( A. t  e.  S  n  <_  t  ->  -.  n  e.  S )
)
6861, 67sylcom 27 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  M
)  ->  ( ( S  C_  ( ZZ>= `  M
)  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  -.  n  e.  S ) )
69 ssel 3342 . . . . . . . . . 10  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( n  e.  S  ->  n  e.  ( ZZ>= `  M )
) )
7069con3rr3 130 . . . . . . . . 9  |-  ( -.  n  e.  ( ZZ>= `  M )  ->  ( S  C_  ( ZZ>= `  M
)  ->  -.  n  e.  S ) )
7170adantrd 455 . . . . . . . 8  |-  ( -.  n  e.  ( ZZ>= `  M )  ->  (
( S  C_  ( ZZ>=
`  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  -.  n  e.  S
) )
7268, 71pm2.61i 158 . . . . . . 7  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  E. j  e.  S  A. t  e.  S  j  <_  t )  ->  -.  n  e.  S )
7372ex 424 . . . . . 6  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( -.  E. j  e.  S  A. t  e.  S  j  <_  t  ->  -.  n  e.  S ) )
7473alrimdv 1643 . . . . 5  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( -.  E. j  e.  S  A. t  e.  S  j  <_  t  ->  A. n  -.  n  e.  S
) )
75 eq0 3642 . . . . 5  |-  ( S  =  (/)  <->  A. n  -.  n  e.  S )
7674, 75syl6ibr 219 . . . 4  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( -.  E. j  e.  S  A. t  e.  S  j  <_  t  ->  S  =  (/) ) )
7776con1d 118 . . 3  |-  ( S 
C_  ( ZZ>= `  M
)  ->  ( -.  S  =  (/)  ->  E. j  e.  S  A. t  e.  S  j  <_  t ) )
7877imp 419 . 2  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  S  =  (/) )  ->  E. j  e.  S  A. t  e.  S  j  <_  t )
79 breq2 4216 . . . 4  |-  ( t  =  k  ->  (
j  <_  t  <->  j  <_  k ) )
8079cbvralv 2932 . . 3  |-  ( A. t  e.  S  j  <_  t  <->  A. k  e.  S  j  <_  k )
8180rexbii 2730 . 2  |-  ( E. j  e.  S  A. t  e.  S  j  <_  t  <->  E. j  e.  S  A. k  e.  S  j  <_  k )
8278, 81sylib 189 1  |-  ( ( S  C_  ( ZZ>= `  M )  /\  -.  S  =  (/) )  ->  E. j  e.  S  A. k  e.  S  j  <_  k )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359   A.wal 1549    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706    C_ wss 3320   (/)c0 3628   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   RRcr 8989   1c1 8991    + caddc 8993    < clt 9120    <_ cle 9121   ZZcz 10282   ZZ>=cuz 10488
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-n0 10222  df-z 10283  df-uz 10489
  Copyright terms: Public domain W3C validator