MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vc0 Unicode version

Theorem vc0 21085
Description: Zero times a vector is the zero vector. Equation 1a of [Kreyszig] p. 51. (Contributed by NM, 4-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1  |-  G  =  ( 1st `  W
)
vc0.2  |-  S  =  ( 2nd `  W
)
vc0.3  |-  X  =  ran  G
vc0.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
vc0  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( 0 S A )  =  Z )

Proof of Theorem vc0
StepHypRef Expression
1 vc0.1 . . . 4  |-  G  =  ( 1st `  W
)
2 vc0.3 . . . 4  |-  X  =  ran  G
3 vc0.4 . . . 4  |-  Z  =  (GId `  G )
41, 2, 3vc0rid 21083 . . 3  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( A G Z )  =  A )
5 ax-1cn 8763 . . . . . 6  |-  1  e.  CC
65addid1i 8967 . . . . 5  |-  ( 1  +  0 )  =  1
76oveq1i 5802 . . . 4  |-  ( ( 1  +  0 ) S A )  =  ( 1 S A )
8 0cn 8799 . . . . 5  |-  0  e.  CC
9 vc0.2 . . . . . . 7  |-  S  =  ( 2nd `  W
)
101, 9, 2vcdir 21069 . . . . . 6  |-  ( ( W  e.  CVec OLD  /\  ( 1  e.  CC  /\  0  e.  CC  /\  A  e.  X )
)  ->  ( (
1  +  0 ) S A )  =  ( ( 1 S A ) G ( 0 S A ) ) )
115, 10mp3anr1 1279 . . . . 5  |-  ( ( W  e.  CVec OLD  /\  ( 0  e.  CC  /\  A  e.  X ) )  ->  ( (
1  +  0 ) S A )  =  ( ( 1 S A ) G ( 0 S A ) ) )
128, 11mpanr1 667 . . . 4  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( 1  +  0 ) S A )  =  ( ( 1 S A ) G ( 0 S A ) ) )
131, 9, 2vcid 21067 . . . 4  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( 1 S A )  =  A )
147, 12, 133eqtr3a 2314 . . 3  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( 1 S A ) G ( 0 S A ) )  =  A )
1513oveq1d 5807 . . 3  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( 1 S A ) G ( 0 S A ) )  =  ( A G ( 0 S A ) ) )
164, 14, 153eqtr2rd 2297 . 2  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( A G ( 0 S A ) )  =  ( A G Z ) )
171, 9, 2vccl 21066 . . . . 5  |-  ( ( W  e.  CVec OLD  /\  0  e.  CC  /\  A  e.  X )  ->  ( 0 S A )  e.  X )
188, 17mp3an2 1270 . . . 4  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( 0 S A )  e.  X
)
191, 2, 3vczcl 21082 . . . . 5  |-  ( W  e.  CVec OLD  ->  Z  e.  X )
2019adantr 453 . . . 4  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  Z  e.  X
)
21 simpr 449 . . . 4  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  A  e.  X
)
2218, 20, 213jca 1137 . . 3  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( 0 S A )  e.  X  /\  Z  e.  X  /\  A  e.  X ) )
231, 2vclcan 21081 . . 3  |-  ( ( W  e.  CVec OLD  /\  ( ( 0 S A )  e.  X  /\  Z  e.  X  /\  A  e.  X
) )  ->  (
( A G ( 0 S A ) )  =  ( A G Z )  <->  ( 0 S A )  =  Z ) )
2422, 23syldan 458 . 2  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( A G ( 0 S A ) )  =  ( A G Z )  <->  ( 0 S A )  =  Z ) )
2516, 24mpbid 203 1  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( 0 S A )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    /\ w3a 939    = wceq 1619    e. wcel 1621   ran crn 4662   ` cfv 4673  (class class class)co 5792   1stc1st 6054   2ndc2nd 6055   CCcc 8703   0cc0 8705   1c1 8706    + caddc 8708  GIdcgi 20814   CVec OLDcvc 21061
This theorem is referenced by:  vcz  21086  vcm  21087  nv0  21155
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1927  ax-ext 2239  ax-rep 4105  ax-sep 4115  ax-nul 4123  ax-pow 4160  ax-pr 4186  ax-un 4484  ax-resscn 8762  ax-1cn 8763  ax-icn 8764  ax-addcl 8765  ax-addrcl 8766  ax-mulcl 8767  ax-mulrcl 8768  ax-mulcom 8769  ax-addass 8770  ax-mulass 8771  ax-distr 8772  ax-i2m1 8773  ax-1ne0 8774  ax-1rid 8775  ax-rnegex 8776  ax-rrecex 8777  ax-cnre 8778  ax-pre-lttri 8779  ax-pre-lttrn 8780  ax-pre-ltadd 8781
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1884  df-eu 2122  df-mo 2123  df-clab 2245  df-cleq 2251  df-clel 2254  df-nfc 2383  df-ne 2423  df-nel 2424  df-ral 2523  df-rex 2524  df-reu 2525  df-rab 2527  df-v 2765  df-sbc 2967  df-csb 3057  df-dif 3130  df-un 3132  df-in 3134  df-ss 3141  df-nul 3431  df-if 3540  df-pw 3601  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3802  df-iun 3881  df-br 3998  df-opab 4052  df-mpt 4053  df-id 4281  df-po 4286  df-so 4287  df-xp 4675  df-rel 4676  df-cnv 4677  df-co 4678  df-dm 4679  df-rn 4680  df-res 4681  df-ima 4682  df-fun 4683  df-fn 4684  df-f 4685  df-f1 4686  df-fo 4687  df-f1o 4688  df-fv 4689  df-ov 5795  df-1st 6056  df-2nd 6057  df-iota 6225  df-riota 6272  df-er 6628  df-en 6832  df-dom 6833  df-sdom 6834  df-pnf 8837  df-mnf 8838  df-ltxr 8840  df-grpo 20818  df-gid 20819  df-ginv 20820  df-ablo 20909  df-vc 21062
  Copyright terms: Public domain W3C validator