MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcm Unicode version

Theorem vcm 22038
Description: Minus 1 times a vector is the underlying group's inverse element. Equation 2 of [Kreyszig] p. 51. (Contributed by NM, 25-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vcm.1  |-  G  =  ( 1st `  W
)
vcm.2  |-  S  =  ( 2nd `  W
)
vcm.3  |-  X  =  ran  G
vcm.4  |-  M  =  ( inv `  G
)
Assertion
Ref Expression
vcm  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( -u 1 S A )  =  ( M `  A ) )

Proof of Theorem vcm
StepHypRef Expression
1 vcm.1 . . . . 5  |-  G  =  ( 1st `  W
)
21vcgrp 22025 . . . 4  |-  ( W  e.  CVec OLD  ->  G  e. 
GrpOp )
32adantr 452 . . 3  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  G  e.  GrpOp )
4 neg1cn 10056 . . . 4  |-  -u 1  e.  CC
5 vcm.2 . . . . 5  |-  S  =  ( 2nd `  W
)
6 vcm.3 . . . . 5  |-  X  =  ran  G
71, 5, 6vccl 22017 . . . 4  |-  ( ( W  e.  CVec OLD  /\  -u 1  e.  CC  /\  A  e.  X )  ->  ( -u 1 S A )  e.  X
)
84, 7mp3an2 1267 . . 3  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( -u 1 S A )  e.  X
)
9 eqid 2435 . . . 4  |-  (GId `  G )  =  (GId
`  G )
106, 9grporid 21796 . . 3  |-  ( ( G  e.  GrpOp  /\  ( -u 1 S A )  e.  X )  -> 
( ( -u 1 S A ) G (GId
`  G ) )  =  ( -u 1 S A ) )
113, 8, 10syl2anc 643 . 2  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( -u
1 S A ) G (GId `  G
) )  =  (
-u 1 S A ) )
12 simpr 448 . . . . . 6  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  A  e.  X
)
13 vcm.4 . . . . . . . 8  |-  M  =  ( inv `  G
)
146, 13grpoinvcl 21802 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( M `  A )  e.  X )
152, 14sylan 458 . . . . . 6  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( M `  A )  e.  X
)
166grpoass 21779 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  (
( -u 1 S A )  e.  X  /\  A  e.  X  /\  ( M `  A )  e.  X ) )  ->  ( ( (
-u 1 S A ) G A ) G ( M `  A ) )  =  ( ( -u 1 S A ) G ( A G ( M `
 A ) ) ) )
173, 8, 12, 15, 16syl13anc 1186 . . . . 5  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( (
-u 1 S A ) G A ) G ( M `  A ) )  =  ( ( -u 1 S A ) G ( A G ( M `
 A ) ) ) )
181, 5, 6vcid 22018 . . . . . . . 8  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( 1 S A )  =  A )
1918oveq2d 6088 . . . . . . 7  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( -u
1 S A ) G ( 1 S A ) )  =  ( ( -u 1 S A ) G A ) )
20 ax-1cn 9037 . . . . . . . . . 10  |-  1  e.  CC
2120negidi 9358 . . . . . . . . . 10  |-  ( 1  +  -u 1 )  =  0
2220, 4, 21addcomli 9247 . . . . . . . . 9  |-  ( -u
1  +  1 )  =  0
2322oveq1i 6082 . . . . . . . 8  |-  ( (
-u 1  +  1 ) S A )  =  ( 0 S A )
241, 5, 6vcdir 22020 . . . . . . . . . 10  |-  ( ( W  e.  CVec OLD  /\  ( -u 1  e.  CC  /\  1  e.  CC  /\  A  e.  X ) )  -> 
( ( -u 1  +  1 ) S A )  =  ( ( -u 1 S A ) G ( 1 S A ) ) )
254, 24mp3anr1 1276 . . . . . . . . 9  |-  ( ( W  e.  CVec OLD  /\  ( 1  e.  CC  /\  A  e.  X ) )  ->  ( ( -u 1  +  1 ) S A )  =  ( ( -u 1 S A ) G ( 1 S A ) ) )
2620, 25mpanr1 665 . . . . . . . 8  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( -u
1  +  1 ) S A )  =  ( ( -u 1 S A ) G ( 1 S A ) ) )
271, 5, 6, 9vc0 22036 . . . . . . . 8  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( 0 S A )  =  (GId
`  G ) )
2823, 26, 273eqtr3a 2491 . . . . . . 7  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( -u
1 S A ) G ( 1 S A ) )  =  (GId `  G )
)
2919, 28eqtr3d 2469 . . . . . 6  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( -u
1 S A ) G A )  =  (GId `  G )
)
3029oveq1d 6087 . . . . 5  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( (
-u 1 S A ) G A ) G ( M `  A ) )  =  ( (GId `  G
) G ( M `
 A ) ) )
3117, 30eqtr3d 2469 . . . 4  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( -u
1 S A ) G ( A G ( M `  A
) ) )  =  ( (GId `  G
) G ( M `
 A ) ) )
326, 9, 13grporinv 21805 . . . . . 6  |-  ( ( G  e.  GrpOp  /\  A  e.  X )  ->  ( A G ( M `  A ) )  =  (GId `  G )
)
332, 32sylan 458 . . . . 5  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( A G ( M `  A
) )  =  (GId
`  G ) )
3433oveq2d 6088 . . . 4  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( -u
1 S A ) G ( A G ( M `  A
) ) )  =  ( ( -u 1 S A ) G (GId
`  G ) ) )
3531, 34eqtr3d 2469 . . 3  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( (GId `  G ) G ( M `  A ) )  =  ( (
-u 1 S A ) G (GId `  G ) ) )
366, 9grpolid 21795 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( M `  A )  e.  X )  ->  (
(GId `  G ) G ( M `  A ) )  =  ( M `  A
) )
373, 15, 36syl2anc 643 . . 3  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( (GId `  G ) G ( M `  A ) )  =  ( M `
 A ) )
3835, 37eqtr3d 2469 . 2  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( ( -u
1 S A ) G (GId `  G
) )  =  ( M `  A ) )
3911, 38eqtr3d 2469 1  |-  ( ( W  e.  CVec OLD  /\  A  e.  X )  ->  ( -u 1 S A )  =  ( M `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   ran crn 4870   ` cfv 5445  (class class class)co 6072   1stc1st 6338   2ndc2nd 6339   CCcc 8977   0cc0 8979   1c1 8980    + caddc 8982   -ucneg 9281   GrpOpcgr 21762  GIdcgi 21763   invcgn 21764   CVec OLDcvc 22012
This theorem is referenced by:  vcrinv  22039  vclinv  22040  nvinv  22108
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-1st 6340  df-2nd 6341  df-riota 6540  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-ltxr 9114  df-sub 9282  df-neg 9283  df-grpo 21767  df-gid 21768  df-ginv 21769  df-ablo 21858  df-vc 22013
  Copyright terms: Public domain W3C validator