MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vcz Unicode version

Theorem vcz 20956
Description: Anything times the zero vector is the zero vector. Equation 1b of [Kreyszig] p. 51. (Contributed by NM, 24-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
vc0.1  |-  G  =  ( 1st `  W
)
vc0.2  |-  S  =  ( 2nd `  W
)
vc0.3  |-  X  =  ran  G
vc0.4  |-  Z  =  (GId `  G )
Assertion
Ref Expression
vcz  |-  ( ( W  e.  CVec OLD  /\  A  e.  CC )  ->  ( A S Z )  =  Z )

Proof of Theorem vcz
StepHypRef Expression
1 vc0.1 . . . . . 6  |-  G  =  ( 1st `  W
)
2 vc0.3 . . . . . 6  |-  X  =  ran  G
3 vc0.4 . . . . . 6  |-  Z  =  (GId `  G )
41, 2, 3vczcl 20952 . . . . 5  |-  ( W  e.  CVec OLD  ->  Z  e.  X )
54anim2i 555 . . . 4  |-  ( ( A  e.  CC  /\  W  e.  CVec OLD )  ->  ( A  e.  CC  /\  Z  e.  X ) )
65ancoms 441 . . 3  |-  ( ( W  e.  CVec OLD  /\  A  e.  CC )  ->  ( A  e.  CC  /\  Z  e.  X ) )
7 0cn 8711 . . . 4  |-  0  e.  CC
8 vc0.2 . . . . 5  |-  S  =  ( 2nd `  W
)
91, 8, 2vcass 20940 . . . 4  |-  ( ( W  e.  CVec OLD  /\  ( A  e.  CC  /\  0  e.  CC  /\  Z  e.  X )
)  ->  ( ( A  x.  0 ) S Z )  =  ( A S ( 0 S Z ) ) )
107, 9mp3anr2 1280 . . 3  |-  ( ( W  e.  CVec OLD  /\  ( A  e.  CC  /\  Z  e.  X ) )  ->  ( ( A  x.  0 ) S Z )  =  ( A S ( 0 S Z ) ) )
116, 10syldan 458 . 2  |-  ( ( W  e.  CVec OLD  /\  A  e.  CC )  ->  ( ( A  x.  0 ) S Z )  =  ( A S ( 0 S Z ) ) )
12 mul01 8871 . . . 4  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
1312oveq1d 5725 . . 3  |-  ( A  e.  CC  ->  (
( A  x.  0 ) S Z )  =  ( 0 S Z ) )
141, 8, 2, 3vc0 20955 . . . 4  |-  ( ( W  e.  CVec OLD  /\  Z  e.  X )  ->  ( 0 S Z )  =  Z )
154, 14mpdan 652 . . 3  |-  ( W  e.  CVec OLD  ->  ( 0 S Z )  =  Z )
1613, 15sylan9eqr 2307 . 2  |-  ( ( W  e.  CVec OLD  /\  A  e.  CC )  ->  ( ( A  x.  0 ) S Z )  =  Z )
1715oveq2d 5726 . . 3  |-  ( W  e.  CVec OLD  ->  ( A S ( 0 S Z ) )  =  ( A S Z ) )
1817adantr 453 . 2  |-  ( ( W  e.  CVec OLD  /\  A  e.  CC )  ->  ( A S ( 0 S Z ) )  =  ( A S Z ) )
1911, 16, 183eqtr3rd 2294 1  |-  ( ( W  e.  CVec OLD  /\  A  e.  CC )  ->  ( A S Z )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   ran crn 4581   ` cfv 4592  (class class class)co 5710   1stc1st 5972   2ndc2nd 5973   CCcc 8615   0cc0 8617    x. cmul 8622  GIdcgi 20684   CVec OLDcvc 20931
This theorem is referenced by:  vcoprne  20965  nvsz  21026
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-id 4202  df-po 4207  df-so 4208  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-pnf 8749  df-mnf 8750  df-ltxr 8752  df-grpo 20688  df-gid 20689  df-ginv 20690  df-ablo 20779  df-vc 20932
  Copyright terms: Public domain W3C validator